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I. BACKGROLTD KVI) rm1vxrIo:t  FOR TEE EWERIE~T 

BACKGROUND -- 
I 

Almost a  q u a r t e r  of a  c e n t u r y  e l apsed  between the  d iscovery  of 

supe rconduc t iv i ty  by Knmerlingh Onnnes(lr i n  1911 and the  f i r s t  sugges t ion  

by F r i t z  London i n  1935 (2) t h a t  a  gap i n  t h e  energy spectrum of e l e c t r o n s  

i n  superconductors might be r e s p o n s i b l e  f o r  t h e  pheno~enon.  Q u a n t i t a t i v e  

!! r e s u l t s  d i d  no t  a r r i v e  u n t i l  1953 &%en neasu rec rn t  of e l e c t r o n i c  thermal 

conduct iv i ty(3)  by Goodman and of s p e c i f i c  h e a t  by Brown, Zeriansky, and 

~ o o r s e ( ~ )  shoved exponen t i a l  behavior  c h a r a c t e r i s t i c  of an  energy gap. 

I n  1955 Bardeen showed t h a t  t h e  He i s sne r  e f f e c t ,  o r  complete exc lus ion  of 

magnetic f l u x  from the  i n t e r i o r  o f  a superconductor ,  followed from t h e  

e z i s t e n c e  of a n  energy gap, (' The c u r r e n t l y  accepted  b a s i c  theory  o f  

supe rconduc t iv i ty  by Bardeen, Cooper, and ~ c h r i e f f e r ' ~ )  (BCS), published 

i n  1957, f o r t y - s i x  y e a r s  a f t e r  Onnes' d i s cove ry ,  d i d  indeed p r e d i c t  a n  

energy gap having a  va lue  t ? ~  = 3.53 k T &fiere Tc i s  t he  superconducting 
g  Bc' 

t r a n s i t i o n  temperature i n  z e r o  magnetic f i e l d ,  and provided an  exp lana t ion  

o f  most of t he  exper imenta l  r e s u l t s  a v a i l a b l e  a t  t h a t  time. 

k%y was t h e  energy gap n o t  measured d i r e c t l y  and a c c u r a t e l y  by 

t h i s  t ime? It might seem s imple  t o  have  made spec t roscop ic  measurements: 

e l e c t r o n s  could be e x c i t e d  above t h e  gap only  by those  photons whose 

e n e r g i e s  were g r e a t e r  t han  t h e  gap; a s h a r p  break should occur a t  t he  gap. 

We now know from t h e  BCS theory  t h a t  t h e  photons would have t o  have twice 

t h e  gap energy because they a r e  a l l  p a i r e d  a t  z e r o  tempera ture  and must 

t h e r e f o r e  be e x c i t e d  i n  p a i r s .  Using t h e  ECS p r e d i c t i o n  and assuming a  

t r a n s i t i o n  tempera ture  of between I and 7 K, t h e  wavelength of r a d i a t i o n  



i a t  t he  gap edge would be between 2000 and 300 microns, a range i n  which 
j 

s ,  and s t i l l  is, d i f f i c u l t  t o  genera te .  Op t i ca l  techniques 

1 
? 2 

a t  t he  gap edge would be between 2000 and 300 microns, a range i n  which 
j 
i r a d i a t i o n  was, and s t i l l  is, d i f f i c u l t  t o  genera te .  Op t i ca l  techniques 

I produce r a d i a t i o n  with s u f f i c i e n t  i n t e n s i t y  t o  be e a s i l y  and accu ra t e ly  
i 

de tec t ed  only f o r  wavelengths s h o r t e r  t han  a few hundred microns; microwave 

technology becomes very d i f f i c u l t  wi th  wavelengths s h o r t e r  than 2000 microns 

Hence i t  was no t  u n t i l  1957 t h a t  t he  f i r s t  of many experiments,  

on superconductors with r e l a t i v e l y  l a r g e  energy gaps appeared.  The i n i t i a l  

work by Glover and  inkh ham(^) used f a r  i n f r a r e d  r a d i a t i o n  t r ansmi t t ed  

through t h i n  f i lms  of lead  and t i n  and produced r e s u l t s  c o n s i s t e n t  with 

z e r o  abso rp t ion  below 3k T t o  4k T and g radua l ly  r i s i n g  t o  t h e  normal B c B c 

s t a t e  va lue  above t h a t .  Microwave experiments were performed by them a l s o .  

These experiments were o f  l imi t ed  accuracy because of t h e  l i m i t a t i o n s  of 

t h e  Golay c e l l  d e t e c t o r  which was used, and because of t he  low i n t e n s i t y  of 

r a d i a t i o n  a v a i l a b l e .  

More accu ra t e  r e s u l t s  were poss ib l e  a f t e r  t h e  advent of t he  carbon 

bolometer(8) d e t e c t o r .  This device  was employed i n  subsequent experiments 

by Ginsberg and  inkh ham(^) on t h i n  f i l m s  of lead ,  t i n ,  mercury, and indium, 

and by Richards and ~inkham('O) on bulk samples of indium, t i n ,  mercury, 

tantalum, vanadium, l ead ,  and n iob iu  

By t h i s  time Mat t i s  and ~ a r d e e n ( l l )  (MB) had app l i ed  t h e  ECS 

theory ,  which i s  v a l i d  f o r  superconductors i n  which the  coupl ing between 

e l e c t r o n s  and phonons is r e l a t i v e l y  weak, t o  t h e  problem of the  i n t e r a c t i o n  

between photons and superconducting e l e c t r o n s .  The new experiments showed 

q u a l i t a t i v e  agreement with t he  theory ,  but  some nagging d i f f i c u l t i e s  



I 

3 

reuained: i n  l ead ,  which is s t rongly-coupled  and t o  which t h e  M1S theory  

does no t  n e c e s s a r i l y  apply ,  t he  onse t  o f  abso rp t ion  beyond Lhe gap edge 

was more r a p i d  than p red ic t ed ,  and s t r u c t u r e ,  wi th  magniiude near  t h e  

expected e x p c r i ~ n t a l  e r r o r  and a? f r equenc ie s  below the  gap, was 

unexplained. Within exper imenta l  e r r o r ,  o t h e r  m a t e r i a l s  probably gave 

adequate agreenent  w i th  t h e  theory .  

I n  t h e  experiments on t h i n  f i l m s ,  measurements were made of one 

quan t i t y ,  t h e  r a t i o  T /T of r a d i a t i o n  t r a n s m i t t e d  through a f i l m  i n  t he  
s n  

superconduct ing  s t a t e  t o  t h a t  t r ansmi t t ed  through i t  i n  t h e  normal s t a t e .  

The fundamental  q u a n t i t y  de termining t h e  response  o f  t h e  superconductor 

t o  e l e c t r o m g n e t i c  r a d i a t i o n ,  however, is t h e  conduc t iv i ty  

as(u) a U1(w) - ia (w) where ul(u) and u (w) a r e  r e a l .  S ince  al(w) and a (w) 2 2 2 

a r e  r e l a t e d  by t h e  v e r y  g e n e r a l l y  de r ived  Kramers-Kronig r e l a t i o n s ,  t he se  

measurements o f  one q u a n t i t y ,  t h e  t r ansmis s ion  r a t i o ,  could be analyzed t o  

produce t h e  two q u a n t i t i e s  Ul and a2. The d i f f i c u l t y  i n  applying these  

r e l a t i o n s  is t h a t  t hey  r e q u i r e ,  i n  e f f e c t ,  t h a t  t h e  d a t a  be i n t e g r a t e d  

from z e r o  frequency t o  i n f i n i t y .  S ince  d a t a  a r e  a v a i l a b l e  over a  f i n i t e  

range only ,  they must be e x t r a p o l a t e d  t o  t h e  r equ i r ed  l i m i t s ,  a  process  

poss ib ly  l ead ing  t o  e r r o r .  The "precursor" a b s o r p t i o n  observed was c l o s e  

t o  t h e  e s t ima ted  exper imenta l  e r r o r ,  p a r t i c u l a r l y  i f  e r r o r s  a s s o c i a t e d  wi th  

t h e  t r a n s f o r m t i o n  a r e  inc luded.  

I n  t h e  experiments on bulk  samples,  a  tempera ture  dependence of 

t h e  p recu r so r  was observed. Th i s  is  thought t o  show t h a t  t h e  s t r u c t u r e  

was no t  due t o  impur i ty  r a d i a t i o n ,  a c o m o n  problem i n  f a r  i n f r a r e d  

experiments.  
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i 

f o r  aluminum by Biondi and Garfunkel.(12).  Aluminum, which I ~ a s  weak 
4 
1 
7 electron-phonon coupl ing,  has  a sma l l  enough energy gap t o  be spanned by 

i microwave f requencies .  The d a t a  obta ined f o r  t h e  su r f ace  r e s i s t a n c e  of 

1 t h e s e  samples was subsequent ly  i n t e r p r e t e d  by Ffiller(13) w i th in  t he  BCS 

framework. Second, t h e  accuracy of energy gap measurements was d rama t i ca l ly  

advanced i n  1960 wi th  t h e  d i scove ry  of e l e c t r o n  tunnel ing  through a  t h i n ,  

i n s u l a t i n g  l a y e r  s e p a r a t i n g  two superconductors .  (I4) simply by measuring 

the  conductahce of such a dev ice ,  t h e  gap could be measured. Although 

both of t hese  techniques ,  e s p e c i a l l y  t unne l ing  d i d  make p o s s i b l e  improved 

unders tanding o f  supe rconduc t iv i ty ,  n e i t h e r  a p p l i e s  s u f f i c i e n t l y  t o  t h i s  

work t o  warrant  f u r t h e r  d i s c u s s i o n  i n  t h i s  b r i e f  i n t roduc t ion .  

The e a r l y  f a r  i n f r a r e d  experiments by Ginsberg, Richards ,  and 

Tinkham had shown a b s o r p t i o n  peaks somewhat below the  main gap edge i n  

lead.  It was thought f o r  s o w  time t h a t  t hese  might be a s s o c i a t e d  with 

e f f e c t s  of an i so t ropy ,  bu t  exper iments  on a l l o y s  of lead  by Ginsberg and 

(I5) r u l e d  o u t  t h i s  exp lana t ion .  According t o  t h e  Anderson theory  

of "di r ty"  st iperconductors,  (I6) i n  which << 5 1 being t h e  e l e c t r o n i c  
0' 

mean f r e e  path  l eng th  and So, t h e  superconduct ing  coherence l eng th  f o r  a 

pure meta l ,  t he se  a l l o y s  should  have had a a  i s o t r o p i c  energy gap because 

of t h e i r  s h o r t  mean f r e e  paths .  However, t h e  sma l l  precursors  t o  the  gap 

p e r s i s t e d .  Another p o s s i b l e  exp lana t ion  was t h e  ex i s t ence  of some kind of 

c o l l e c t i v e  e f f e c t .  T h e o r i s t s  have never been a b l e ,  however, t o  show cha t  

such a n  e f f e c t  would have t h e  proper  magnitude and dependence on mean f r e e  



L r a p i d  than  p red ic t ed  by MS. 
i 

B 
i At t h i s  po in t ,  a  g r e a t  improvement i n  f a r  i n f r a r e d  technique 

occurred.  The s t anda rd  d e t e c t o r ,  2 bolometcr mdde from an ordindry  carbon 

r e s i s t o r ,  was replaced by one made from a  s i n g l e - c r y s t a l  of semiconductor, 

gene ra l ly  germanium, (I7) but  occas iona l ly  gal l ium a r ~ e n i d e . ( l ~ " ~ )  These 

d e t e c t o r s  produced a s igna l - to -no i se  r a t i o  s e v e r a l  t imes  h ighe r  than t h e  

e a r l i e r  ones had (*') and subsequent experiments gene ra l ly  produced b e t t e r  

I n  1966 Palmer and  inkh ham'^') revealed  a  remarkable experiment 

i n  which both t r ansmis s ion  of f a r  i n f r a r e d  r a d i a t i o n  through a t h i n  f i l m  

of lead  and t h a t  r e f l e c t e d  from it were measured s i rn i~l taneously .  Thus the  

complex conduc t iv i ty  could be obta ined from t h e  d a t a  without the  use  of 

Kramers-Kronig t ransforms,  and t h e  n e c e s s i t y  of e x t r a p o l a t i n g  t h e  d a t a  

beyond t h e  r eg ion  of t he  measurements d i d  no t  occur. For f requencies  

above about two- th i rds  of t h e  gap frequency, t hese  d a t a  showed no precursor  

i n  al/O, l a r g e r  t han  about 0.1, a  f a c t o r  of two sma l l e r  than t h a t  previous ly  

thocght might e x i s t .  However, even i n  t h i s  experiment which had the  

zdvaatage  of a  germanium bolometer and modern, low-noise lock- in  a m p l i f i e r ,  

e i t h e r  a  low s igna l - to -no i se  r a t i o  o r  sys t ema t i c  e r r o r  made i t  impossible 

t o  r u l e  out  t h e  e x i s t e n c e  o f  a p recu r so r .  The ques t ion  remains open. 

A new theory  had a l s o  become a v a i l a b l e :    am'^^) had c a l c u l a t e d  

t h e  frequency-dependent complex conduc t iv i ty  of a  superconductor,  a c c u r a t e l y  

i n c l u d i n g  t h e  e f f e c t s  of s t rong-coupl ing between e l e c t r o n s  and phonons, a s  



t h e  r e s u l t s  of Palmer and Tinlcham was v a s t l y  s u p e r i o r  t o  t h a t  wi th  t h e  kB 
I 

theory.  Although the  r e a l  p a r t  of Nam's conduc t iv i ty  was v e r y  s i m i l a r  t o  
X 

I 
> 

t he  K6 r e s u l t ,  i t  showed sma l l  s t r u c t u r e  due t o  s t r u c t u r e  i n  t h e  phonon i 
d e n s i t y  of s t a t e s .  Tine imaginary p a r t  of t he  conduc t iv i ty ,  however, was i 
decreased m r k e d l y  be lwi  t h a t  of MB. With only a  sma l l  s c a l i n g  of t h e  gap, I 
t h e  d a t a  of Palmer and Tinkham could be desc r ibed  wi th in  a  few pe rcen t ,  

f o r  f r equenc ie s  above t h e  gap and s l i g h t l y  below it. 

Experiments on bulk  samples of lead  a l l  had shoun s t r u c t u r e  on 
Y 

t h e  gap edge, a t  l e a s t  u n t i l  t h e  r e s u l t s  of Norman and M g l a s s  

became known. These experiments were designed t o  s ea rch  f o r  a p recu r so r  

by measuring d i r e c t l y  t he  abso rp t ion  of a  f o i l  o r  t h i c k  f i lm.  The lowest e 

upper l i m i t  t o  d a t e  on t h e  magnitude of a  p o s s i b l e  p recu r so r  was s e t  by t h i s  
D 

experiment.  From t h e  e x p e r i w n t a l  po in t  of view, t he  sam? au tho r s  r epo r t ed  

s l i g h t l y  l a t e r  t he  f i r s t  time that '  f a r  i n f r a r e d  r a d i a t i o n  had been frequency 

modulated, a t  a n  aud io  r a t e ,  t o  enable  t h e  d i r e c t  measurewnt  of t h e  

d e r i v a t i v e  of t h e  abso rp t ion .  (25) Sharp breaks  occurred a t  t he  energy i 
gaps g iv ing  measurements of them wi th  accuracy r i v a l l i n g  those p o s s i b l e  i n  

t unne l ing  e x p e r i a n t s .  
L 

It is p o s s i b l e  t h a t  t h e  precursor  e x i s t s  f o r  so= samples, bu t  

n o t  f o r  o t h e r s .  The e f f e c t  of s t r a i n s  i n  t h e  sample may be s i g n i f i c a n t .  

Su r face  p r e p a r a t i o n  i~ a l s o  impor tant  a s  r a d i a t i o n  does no t  p e n e t r a t e  

deeply  i n t o  a metal.  A s  i n  t h e  ca se  o f  t h i n  f i l m s  the  q u e s t i o n  of t h e  

p recu r so r  i n  bulk samples i s  no t  y e t  resolved.  



One mark of t he  ma tu r i t y  of t he  f i e l d  of superconductivity i s  

t h e  l a r g e  number of e x c e l l e n t  review a r t i c l e s  a v a i l a b l e .  Those most u s e f u l  

i n  t h i s  work a r e  by Douglass and ~ a l i c o v , ' ~ ~ )  Tinkham, (26,2711 and 

Ginsberg and Hebel. (28) 

PLAN FOR THIS EXFERII-ENT 

The two r e c e n t  experiments and one theory  descr ibed above show 

a n  inc reas ing  unders tanding of the  i n t e r a c t i o n  of f a r  i n f r a r e d  r a d i a t i o n  

wi th  s t rongly-coupled  superconductors.  The theory,  however, has  been 

app l i ed  t o  only one metal:  lead .  Moreover, t h e  ques t ion  of a precursor  

has  not  been resolved.  Thus f u r t h e r  exper imenta l  s t u d i e s  of s t rong ly -  

coupled superconductors  would provide a f u r t h e r  check on t h e  theory.  

The choice  of m a t e r i a l s  f o r  such work i s  r a t h e r  s t r a igh t fo rward .  

Only two meta ls  a r e - a v a i l a b l e  which a r e  s t rongly-coupled  and superconducting 

i n  bulk  form: lead  and mercury. Lead has  been examined a l r eady .  Mercury 

- 1 has  an  energy gap o f  about 13  cm , below which frequency l i t t l e  r a d i a t i o n  

i s  a v a i l a b l e ,  making a c c u r a t e  measurements below the  gap impossible a t  t he  

p re sen t  time. 

Fo r tuna te ly  t h r e e  o t h e r  s t rongly-coupled  examples a r e  a v a i l a b l e .  

When gal l ium,  bismuth, and be ry l l i um a r e  e;aporated on to  a l i q u i d  hel ium 

temperature s u b s t r a t e  they condense i n t o  a n  amorphous form i n  which they 

a r e  superconducting.  (29s30) I n  t h i s  form ga l l i um and beryl l ium have 

t r a n s i t i o n  tempera tures  d rama t i ca l ly  increased from t h e i r  va lues  i n  t he  

bulk. Bismuth is no t  now known t o  be superconducting i n  t he  bulk  a t  

atmospheric pressure .  Beryll ium can be excluded, however, because when 



i nha l ed  i n  f i n e l y  d iv ided form, a s  might be l i k e l y  t o  r e s u l t  from evapora- 

t i o n ,  i t  i s  exceedingly  poisonous. Thus t h e  choice  of b i s m t h  and ga l l i um 

was made f o r  t h i s  experiment.  1 
i 

4 The remarkable p r o p e r t i e s  of amorphous superconductors a r e  1 
i 

i n t e r e s t i n g  i n  themselves.  A review of t he  p r o p e r t i e s  of amorphous bismuth 

and ga l l i um f i lms  is given by Buckel. (31) Recently t h e o r e t i c a l  work has  

been done i n  a n  a t t empt  t o  e x p l a i n  t h e i r  enhanced t r a n s i t i o n  temperatures 

i n  terms of a phonon d e n s i t y  of s t a t e s  enhanced a t  low f requencies .  

Furthermore,  i f  t h e  f i lms  a r e  made ve ry  t h i n ,  i n t e r e s t i n g  s h i f t s  i n  t he  

t r a n s i t i o n  temperatures have been observed.(35) None of t hese  observat ions  

has  inc luded t h e  energy gap, which a n  i n f r a r e d  experiment can measure. 

Next a choice  must be made amongst t h e  o p t i c a l  p r o p e r t i e s  t o  

measure: r e f l e c t i o n ,  abso rp t ion ,  o r  t ransmiss ion.  R e f l e c t i o n  experiments 

u s i n g  non-focusing, f a r  i n f r a r e d  l i g h t  p ipes  a r e  r a t h e r  d i f f i c u l t  because 

spur ious  r e f l e c t i o n s  cannot e a s i l y  be e l iminated .  An abso rp t ion  expe r i -  

ment would have been d i f f i c u l t  wi th  ve ry  t h i n  f i lms .  Tnus a t ransmiss ion 

experiment was deemed most u se fu l .  As a l l  informat ion p e r t i n e n t  t o  super- 

an abso lu t e  measurement was unnecessary.  S ince  only one q u a n t i t y  was 

measured, t he  conduc t iv i ty  could no t  be c a l c u l a t e d  wi thout  r ecour se  t o  t he  

Kramers-Kronig t ransformat ion.  However, the  t h e o r e t i c a l  va lues  of conduc- 

t i v i t y  can be used t o  c a l c u l a t e  t he  measured t ransmiss ion r a t i o ,  enab l ing  a 

comparison with theory.  





Requirenrnts  f o r  :he Cn-os ta t  

A cryosta t -  a6equate  f o r  making the  d e s i r e d  wssurements  had t o  

meet s e v e r a l  c r i t e r i a .  F i r s t ,  t h e  f i l m  had t o  be evaporated onto a l i q u i d  

hel ium temperature s u b s t r z r e ,  and be kep t  below 9 K and i n  h igh vacuum 

u n t i l  t h e  experisrent bias c o q l e t e d .  Second, t he  f a r  i n f r a red  r a d i a t i o n  had 

t o  be t r ansmi t t ed  i n t o  t h e  c r y o s t a t ,  through t h e  f i lm ,  and t o  2 d e t e c t o r  

6 i c h  had Lo be  m a i n t a m d  a t  a cons tan t  temperature near  1 K. Third ,  it 

had t o  be p o s s i b l e  t o  cause  t h e  r a d i a t i o n  t o  pass  a l t e r n a t e l y  through the  

s u b s t r a t e  w i t 6  t h e  f i b  evaporated o r  it and through a c l ean ,  but  o therwise  

i d e n t i c a l ,  s u b s t r a t e  s o  t h a t  t h e  i n t e n s i t y  of t h e  r a d i a t i o n  pass ing through 

t h e  f i l m  could be  nomal i zed .  F i n a l l y ,  t h e  f i l m  would have t o  be maintained 

a t  a cons tan t  temperature i n  t h e  range 5 t o  9 K s o  t h a t  i t s  t r a n s i t i o n  

temperature could be n e u u r e d .  

Cryosta t  

An a l l - m e t a l  c r y o s t a t  p rev ious ly  used i n  t h i s  l abora to ry  (37) 

was modified t o  meet t h e s e  requirements.  It i s  shown i n  Figure  1. The 

bulk of t h e  room temperature  r a d i a t i o n  was sh ie lded  from t h e  experimental  

r eg ion  of t h e  c r y o s t a t  by a c y l i n d r i c a l  copper h e a t  s h i e l d  thermally 

connected t o  a l i q u i d  n i t r o g e n  tank. Ins ide  t h i s  was another  concen t r i c  

h e a t  s h i e l d  cooled by a t aok  f i l l e d  wi th  up t o  2.5 l i t e r s  of l i q u i d  helium. 

Innermost was a 0.5 l i t e r  l i q u i d  hel ium tank which could be pumped on t o  

reduce t h e  temperature  o f  t h e  l i q u i d  heliuru t o  about 1 K. When t h e  l i q u i d  
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hel ium was bo i l ed  o u t  of the .  inner  tank, l eav ing  helium gas  a t  atmospheric 

p re s su re ,  t he  gas provided s u f f i c i e n t  thermal con tac t  through the  pumpzng 

l i n e  with t he  o u t e r  he l ium tank t h a t  t h e  temperature of the  i nne r  tank. 

! remained a t  about 5.3 K. A h e a t e r  could then be used t o  i nc rease  t h e  

i 
d t empera ture  of t h e  inner  tank t o  a s  high a s  77 K while l i q u i d  helium 
i 

1 remained i n  t he  o u t e r  tank. 

1 Movable S l i d e  

! To t h e  bottom of t h e  i nne r  tank was a t t ached  a  v e r t i c a l  copper 

p l a t e  machined t o  look l i k e  the  l e t t e r  "H" turned. on i t s  s i d e .  I n  t he  

c r o s s b a r  o f  t he  A was a  0.500 i n .  diameter ho le  t o  permit  t h e  r a d i a t i o n  

t o  pass  through. TWO t e f l o n  t r acks  were a t t ached  t o  t he  s i d e s  of t h e  R .  

A gap a t  t h e  c e n t e r  of each t r a c k  prevented d i f f e r e n t i a l  c o n t r a c t i o n  

between t h e  copper and t e f l o n  from breaking t h e  t r acks .  I n  a d d i t i o n  t h e  

t r a c k s  were a t t a c h e d  t o  t h e  copper with smal l  spr ing- loaded b o l t s  pas s ing  

throogh s l o t t e d  h o l e s  i n  t h e  t r acks .  S l i d i n g  i n  t he  t r acks  was a  copper 

s l i d e  c o n t a i n i n g  two recessed a r e a s  1.010 in .  by 1.010 in .  i n t o  which t h e  

s u b s t r a t e s  were placed. A ho le  0.500 i n .  i n  d iameter  a t  t h e  c e n t e r  o f  each 

r eces sed  a r e a  l i n e d  u p  e x a c t l y  wi th  the  ho le  i n  t he  H-shaped copper  pla te  

when t h e  s l i d e  was moved t o  t he  proper end of t he  t r ack .  Thus r a d i a t i o n  

a r r i v i n g  a t  t h e  f r o n t  s u r f a c e  of t h e  s l i d e  could be rrade t o  pass  

through e i t h e r  s u b s t r a t e  and t h e  copper H by moving t h e  s l i d e  t o  t h e  

a p p r o p r i a t e  end of i t s  t r ack .  A bundle o f ' abou t  200 number 36 copper 

w i re s ,  4 i n .  long, thermal ly  connected t o  t he  s l i d e  wi th  t h e  copper H,  but 

s t i l l  permit ted  t h e  s l i d e  t o  be moved. A 0.0?0 i n .  d iameter  s t a i n l e s s  

s t e e l  w i r e  a t t a c h e d  t o  each end of the  s l i d e  permi t ted  i t  t o  be pu l l ed  t o  

e i t h e r  end of t h e  t r acks .  These wi re s  passed through the  head s h i e l d s  
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and were a t t ached  t o  s p r i n g s ,  t:hich were i n  t u r n  connected t o  s t r anded  

nylon FIshing l i n e  which could be wound on to  pu l l eys  which were a t  room 

temperature.  Each of t h e  wires  was thermal ly  anchored t o  t he  4 K h e a t  

s h i e l d  by a  bundle of about 25 number 36 copper wires .  Each pu l l ey  was 

J a t t a c h e d  t o  a s h a f t  which passed through a  double o - r ing  s e a l  and could 
I 

be turned by a knob ou t s ide  the  c r y o s t a t .  At each end of t h e  t r a c k  an 

e l e c t r i c a l l y  i n s u l a t e d  con tac t  was grounded when the  s l i d e  reached t h a t  

end of t h e  t r ack .  This  completed a  c i r c u i t ,  l i g h t i n g  e i t h e r  of two neon 

bulbs  o u t s i d e  the  c r y o s t a t  t o  i n d i c a t e  t h e  p o s i t i o n  o f  t h e  s l i d e .  

S u b s t r a t e s  

The s u b s t r a t e s  were op t i ca l ly -po l i shed ,  z - cu t ,  s i n g l e - c r y s t a l  

q u a r t z  p l a t e s  1.000 in .  by 1.000 i n .  (37) To reduce i n t e r f e r e n c e  from 

m u l t i p l e  r e f l e c t i o n s  w i th in  the  s u b s t r a t e s ,  they were wedge-shaped, varying 

in  t h i ckness  from 0.070 in .  t o  0.090 i n .  On t h e  s u b s t r z c e  onto  which t h e  

f i l m s  were evapora ted  were fou r  evaporated gold e l e c t r o d e s  t o  enable  a  

fou r - t e rmina l  measurement of t he  f i l m  r e s i s t a n c e .  E l e c t r i c a l  connect ion  

t o  t h e s e  e l e c t r o d e s  was achieved by p re s su re  con tac t  t o  phosphor bronze 

t a b s  covered with gold f o i l .  Thermal c o n t a c t  between t h e  s u b s t r a t e s  and 

copper  s l i d e  was enhanced by a  t h i n  l a y e r  of Apiezon N-grease (38) between 

them. Care was necessary  t o  keep t h e  l a y e r  of g rease  s u f f i c i e n t l y  t h i n  

t h a t  i t  d i d  not  squeeze out  i n t o  t h e  112 i n .  d iameter  h o l e  i n  t he  s l i d e  

and thus  poss ib ly  i n t e r f e r e  with t he  r a d i a t i o n  pas s ing  through. During 

t h e  evapora t ions  t he  hel ium bath was cooled  t o  about 1.2 K. The bismuth 

f i l m s  were found t o  be i n  t h e  normal s t a t e  du r ing  t h e  evapora t ions ,  but  t he  

g a l l i u m  ones were superconducting.  Thus the  s u r f a c e  tempera ture  o f  t h e  





Evaporator 

The evapora tor  cons i s t ed  of a  molybdenum f i l amen t  suppor ted  

between the  o u t e r  wa l l  of the  c r y o s t a t  and the  n i t rogen  t e q e r a L u r e  h e a t  

s h i e l d  on two copper pos t s  which were a t t ached  t o ,  but e l e c t r i c a l l y  

i n s u l a t e d  from, the  bottom of t he  c r y o s t a t .  The f i lament  was a t  t he  

same he igh t  a s  t he  c e n t e r  of t he  m s k ,  but was h o r i z o n t a l l y  d i sp l aced  from 

t h a t  c e n t e r  by s i x  degrees t o  avoid i n t e r f e r e n c e  wi th  the  l i g h t  p ipe .  The 

f i l amen t  was a  s t r i p  118 in .  wide c u t  from a  shee t  of 0.002 in .  t h i c k  

molybdenum. I t  was fo lded t o  make a  V-shaped dep res s ion  t o  c o n t a i n  t h e  i 
metal t o  be evaporated.  A t a b  on the  s t r i p  was folded t o  form a  back and 

a top  f o r  t he  depress ion.  A t e f l o n  gasket  between each copper pos t  and the  

. bottom of t h e  c r y o s t a t  provided a  vacuum s e a l  and e l e c t r i c a l  i s o l a t i o n .  

K e  mximum c u r r e n t  necessary  t o  evapora te  any of t h e  meta ls  used was 

about  25 A f o r  gall ium. 

Between t h e  f i l amen t  and m s k , . h o l e s  were c u t  i n  t h e  h e a t  s h i e l d s  

t o  permit  t h e  evaporated metal  t o  r each  the  s u b s t r a t e .  The h o l e s  were 

made a s  small a s  poss ib l e  t o  minimize the  h e a t i n g  e f f e c t s  o f  r a d i a t i o n  and 

evaporated metal  a r r i v i n g  i n  t he  exper imenta l  region.  A s h u t t e r  normally 

covered the  h o l e  i n  t he  77 K hea t  s h i e l d  and was opened only  f o r  t h e  

evapora t ions .  

L igh t  Pipe  

Far i n f r a r e d  r a d i a t i o n  was t r ansmi t t ed  i n t o  t h e  c r y o s t a t  through 

a 112 i n .  0.d. by 0.008 in .  w a l l  monel l i g h t  .pipe.(42) The l i g h t  p ipe  

was thermal ly  grounded t o  a n  extens ion of t h e  n i t r o g e n  tempera ture  h e a t  

s h i e l d  and t o  t he  helium temperature hea t  s h i e l d . *  The ex tens ion  was 
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necessa ry  t o  decrease  the  hpa t  f low i n t o  t he  4 ti ba th .  To permit  t h e  

c r y o s t a t  t o  bc disassembled, the  ex t ens ion  was r e ~ o v a b l e .  Ar t h e  4 K end 

of t h e  l i g h t  p ipe  was a  wedged, sooted-quar tz  f i l t e r ( 3 o  0.625 in .  i n  

d iameter  and varying i n  t h i ckness  from 0.080 i n .  t o  0.086 i n .  The f r l t e r  

and s o o t  removed some of t he  r a d i a t i o n  above the  frequency range of 

i n t e r e s t .  'i"ne wedged shape averaged ou t  m u l t i p l e  r e f l e c t i o n s  w i th in  t h e  

f i l t e r .  During the  experiments on bismuth and ga l l i um the  f i l t e r  was 

removed from t h e  l i g h t  p ipe  and a t t ached  t o  t h e  1 ti mask. This l e f t  a  gap 

between t h e  p ipe  and t h e  1 K r eg ion  with t h e  p ipe  t h e r a l l y  anchored only  

t o  t h e  77 1( h e a t  s h i e l d .  This  reduced t h e  h e a t  f low i n t o  t h e  4 K bath  and 

inc reased  from 8 hours  t o  about 14 hours  t he  time i t  took t h e  hel ium i n  

t h e  o u t e r  he l ium tank t o  b o i l  away. When t h i s  change was made t h e  lowest 

a t t a i n a b l e  tempera ture  of t h e  hel ium bath  inc reased  from about  1.02 K t o  

about 1.08 K, presumably from t h e  r a d i a t i o n  from the  77 K pipe.  

For  some o f  t he  measurements a potassium bromide f i l t e r  was 

p l aced  i n  t h e  l i g h t  p ipe  a t  about  i t s  mid-point and t h e r m l l y  connected t o  

t h e  77 K bath.  Th i s  f i l t e r  was 0.625 i n .  i n  d iameter  and was a l s o  wedged, 

va ry ing  i n  t h i ckness  from 0.232 i n .  t o  0.240 i n .  It, combined wi th  t he  

soo ted  q u a r t z ,  removed f r equenc ie s  above about 30 cm-l, t hus  providing a  

check f o r  t he  presence  of high frequency contaminat ion  i n  d a t a  a t  f r equenc ie s  

- 1 
between about  15  cm-I and 30 cm . As it was no t  p o s s i b l e  t o  make i n f r a r e d  

measurements on a given sample both wi th  and wi thout  t h e  f i l t e r ,  a  d i r e c t  

comparison t o  determine i ts  e f f e c t  was no t  poss ib l e .  None of t h e  d a t a  

t aken  sugges ted  t h a t  i t  was necessary  s o  t h a t  f o r  most samples it was n o t  

- 1 used a s  i t  prevented  mfasurements above 30 cm . An i nd i ca t iou .  of those  
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samples f o r  which d a t a  w2s taken with t h i s  f i l t e r  w i l l  be g iven i n  

S e c t i o n  TV with the  data .  

L igh t  Cone and Detector Can 

1 I n  back of the  copper H and s l i d e  were a b ras s  l i g h t  ccne and a  

9 
I can  con ta in ing  the  de tec to r .  T h e , l i g h t  cone was designed t o  reduce t h e  
1 

diameter  of t he  112 in.  beam a s  much a s  poss ib l e  whi le  t r a n s m i t t i n g  t h e  
$ 

most d ive rgen t  r ays  ( 1 8 4  from oar f l1 .5  monochroneter. T l~e  cone was 

1 5 1 8  in .  long, 0.500 in .  i n  diameter a t  the  en t r ance ,  and 0.188 in .  i n  

d iameter  a t  the  e x i t .  A 318 in .  gap between the  cone and back of  the  

copper B reduced t h e  i n t e n s i t y  of r a d i a t i o n  no t  absorbed by t h e  d e t e c t o r ,  

r e f l e c t e d  back t o  the  back of the  s u b s t r a t e ,  and then r e f l e c t e d  back t o  the  

cone. The can completely shie lded the  d e t e c t o r  from a l l  e x t e r n a l  r a d i a t i o n  

except  t h a t  coming through t h e  cone. The mounting of  t h e  d e t e c t o r  w i l l  be 

descr ibed l a t e r .  

Monochrometer 

A f a r  i n f r a r e d  monochroGeter, shown i n  r i g .  2, t he  s a a e  a s  t h a t  

used by C a p p e l l e t t i  ,(43) provided r a d i a t i o n  having wave numbers between 

9 c s l  and 90 cm-I with a  bandwidth of between.6 and 9 percent  fu l l -wld th  

a t  half-maximum, depending on the  wave number. The f i l t e r s  used t o  remove 

h igh  frequency mul t ip l e s  of t he  fundamental were chosen d i f f e r e n t l y  from 

before ,  however. 

The o r i g i n a l  choice of f i l t e r s  was made by Lesl ie(44)  before  

t h e  cons t ruc t ion  of t h e  dry  box discussed below. C a p p e l l e t t i  s e l e c t e d  

f i l t e r s  a f t e r  t he .d ry  box was put i n t o  use.  However, these  were chosen 







2 1  
1 

so that t he  i n t e n s i t y  of t h e  second harmonic w a s  reduced only  one hundred 

t imes  more than the  fundamental. Those s e l e c t e d  f o r  this work provide a 

r e d u c t i o n  by a f a c t o r  of two hundred. Furthermore most of the f i l t e r i n g  
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Table 2 

W N  GRATING SETTIXGS AKD FILTERS 

Wavelength Hain Gra t ing  Angle 
(Microns) (Divis ions)  and F i l t c r s f  

8.89 5.2 1125. C247 i h 5 
9.41 5.5 1063. E233 i b 4 

10.00 5.9 1000 .o E219 i d'4 
10.55 6.2 945.6 E207 i d'4 

11.22 6.6 891.2 El95 h d 4 
11.35 7.1 836.8 El83 g'd 4 

12.78 7.6 782.2 * 6171 g o d  4 
13.74 8.1 727.6 El59 g c '4  

14.85' 6.1 673.6 D212 g c ' 3  
15.73 6.4 635.7 0200 f c c  3 

16.73 6.9 597.9 Dl88 f ' c  3 
560.0 Dl76 f b'3 

19.16 7.9 522.0 Dl64 f b'3 
19.91 8.2 502.3 Dl58 e U b ' 3  

20.66 8.5 484.0 Dl52 e u b  3 
Dl46 e v b  3 

22.40 5.7 446.5 C225 e a ' 3  
23.02 5.8 434.4 C219 e a ' 3  

23.64 6.0 422.9 6213 e a 1 3  
25.04 6.4 399.3 C201 d P a ' 3  

26.62 6.8 375.7 C189 d ' a  2 
28.41 7.3 352 .0 C177 d D a  2 

30.47 7.8 328.2 C165 d a 2 
32.84 8.5 304.5 C153 d a 2 

35.62 9.2 280.7 C141 c %  1 
38.86 6.0 257.3 E216 c P a  1 

41.13 6.3 243.1 * E204 c a 1 
43.68 6.7 228.9 El92 c a 1 





mnochrometer f o r  changing g r a t i n g s  and f i l t e r s ,  align in^ t h e  ins t rument ,  

and changing t h e  lamp. To dry  the  gas ,  t h e  box was f i r s t  f l u shed  with 

s e v e r a l  ti1lh2s i ts  volume of dry  n i t r o g e n  gas.  Then a f an  was used t o  

j cont inuously  c i r c u l a t e  t h e  gas through a U-shaped tube  of d ry ing  agent  
( 4  6) 

a t  one end of t h e  box. V ib ra t ions  from t h e  f a n  were decoupled from the  

monochrometer by mounting the  f a n  on sp r ings .  The gas  was blown through 

a tube t o  t he  o t h e r  end of t h e  box t o  provide  c i r c u l a t i o n  wi th in  the  box. 

V ib ra t ion  from the  chopper was a l s o  reduced by mounting i t  on 

a suppor t  which r e s t e d  d i r e c t l y  on t h e  c m c r e t e  f l o o r  o f  t h e  l abo ra to ry .  

The only  mechanical coupl ing between t h e  chopper and monochrometer was 

through t h e  conc re t e  f l o o r ,  t h e  e l e c t r i c a l  l e a d s  t o  t h e  chopper motor, 

t h e  atmosphere i n  t h e  box, and a f l e x i b l e  polyethylene  s e a l  which prevented 

water  vapor from e n t e r i n g  t h e  d r y  box around t h e  chopper suppor t .  A l l  of 

t h e s e  types  of coupl ing were very  sma l l  indeed. 

Detec tor  

The d e t e c t o r  was a bolometer m d e  from a semiconducting ga l l i um 

a r s e n i d e  s i n g l e  doped wi th  I t o  2 X  10'' atoms/cm3 of z inc .  

Leads were a t t a c h e d  t o  t he  ga l l i um a r s e n i d e  by s o l d e r i n g  i n  a hydrogen 

atmosphere a s  desc r ibed  by C a p p e l l e t t i .  (43' The l eads  used were 0.005 i n .  

d iameter  copper wire., i n  c o n t r a s t  t o  t h e  cons t an t an  l eads  used previous ly .  

Uhen us ing  t h e  s p e c i a l  s o l d e r  p rev ious ly  used t o  produce ohmic con tac t s ,  

t h e  copper l eads  melted be fo re  t h e  s o l d e r  became ho t  enough t o  wet t he  

g a l l i u m  a r sen ide .  Thus, a s  sugges ted  by t lneeler  and ~ i 1 1 , " ~ )  copper was 
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evapora ted  on to  each end o f  t h e  blank which was then heated  i n  a vacuum t o  

4 0 0 ~ ~  f o r  s e v e r a l  hours.  The copper l eads  were f i n a l l y  a t t ached  with 

indium so lde r  t o  the  evaporated copper. 

C a p p e l l e t t i  was a b l e  t o  use  low thermal conductance constantan  

l eads  by admi t t i ng  helium exchangc gas i n t o  t he  space around h i s  bolometer 

i n  order  t o  produce any des i r ed  thermal conductance between h i s  bolometer 

and the  helium bath. This  procedure was attempted and found inadequate 

wi th  t h i s  exper imenta l  arrangement. The s u b s t r a t e  w i th  t h e  f i l m  on i t  

sh i e lded  the  d e t e c t o r  from unchopped r a d i a t i o n  unavoidably p re sen t  i n  t h e  

beam. When the  c l e a n  s u b s t r a t e  was removed i n t o  p l ace ,  t he  bolometer was 

no longer sh i e lded  from t h i s  r a d i a t i o n  and i t s  temperature increased.  This 

could be co r r ec t ed  f o r  a s  descr ibed below, but t he  hel ium exchange gas a l s o  

became warmer, changing its p res su re  and thus t h e  thermal c o n t a c t  between 

t h e  bolometer and bath. Although conceivably t h i s  could a l s o  have been 

co r r ec t ed  f o r ,  d i f f i c u l t i e s  i n  measuring p re s su re  made t h e  s t a b l e ,  

reproduceable thermal l i n k  provided by copper l eads  p re fe rab le .  

A number of germnium bolometers were a l s o  manufactured from 

sanp le s  doped with antimony(48) and g z ~ l i u m . ( ~ ~ )  Ohmic c o n t a c t s  were e a s i l y  

m d e ,  and t h e  r e s u l t i n g  d e t e c t o r s  had about t he  same s e n s i t i v i t y  a s  t h e  

ga l l i um a r sen ide  devices.  However, s i n c e  t h e  bes t  germanium d e t e c t o r  

produced twice a s  much noise ,  they were a l l  ? e j ec t ed  i n  favor  of t he  

ga l l i um a r sen ide  one. 

Detec tor  Mount 

The d e t e c t o r  was mounted on a copper p l a t e  i n s i d e  the  previous ly-  

mentioned can. The p l a t e  was supported by t h r e e  threaded s t u d s  and 
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t he rma l ly  grounded t o  t h e  can by a  copper b ra id .  Two 0.005 in .  t h i c k  i 
copper s h e e t s  were epoxiedf3) t o  s e p a r a t e  h a l v e s  of one f ace  of t h e  p l a t e  I 
u s i n g  0.0035 in .  t h i c k  Hy1ar f o r  e l e c t r i c a l  i n s u l a t i o n .  Each bolometer 

i 
4 

lead  was soldered  t o  a  t a b  on each copper s h e e t .  The r e l a t i v e l y  l a rge  I 
i 

a r e a  of t he  copper s h e e t s  provided good tiiermal con tac t  t o  t h e  copper 

p l a t e .  The r e s u l t i n g  thermal conductance between t h e  ga l l i um a r sen ide  

- 6 
and bath ,  i nc lud ing  a l l  thermal impedances, was about  7 x 1 0  W/K a t  t he  

ope ra t ing  temperature and t h e  dev ice  had a t i n e  cons t an t  of about two I 
I 

mi l l i s econds .  

Precaut ions  Against  Spurious R e f l e c t i o n s  

A major d i f f i c u l t y  i n  f a r  i n f r a r e d  work i s  t h e  h igh  r e f l e c t a n c e  

i n  t h e  f a r  i n f r a r e d  of t he  meta ls  n e c e s s a r i l y  used i n  t he  cryogenic  

appara tus .  This  h igh  r e f l e c t a n c e  was reduced by two c o m e r c i a 1  products.  

The f i r s t  was 3M Nexte l  Velvet  ~ o i n t ( ~ l )  which was app l i ed  i n  e i g h t  t h i n  1 
i 
1 c o a t s  producing a  t o t a l  t h i ckness  o f  about  one mm. The second was Eccosorb ! 

LS - 22,(52) a  f l e x i b l e  b l ack  foam s h e e t  118 in .  t h i ck .  It could be c u t  

w i th  s i s s o r s  i n t o  convenient forms and a t t a c h e d  t o  a  metal  s u r f a c e  with 

rubbe r  cement. To t e s t  t h e  e f f i c a c y  o f  t h e s e  abso rbe r s ,  a s  w e l l  a s  t h a t  

o f  f e l t ,  t he  f i l t e r  g r a t i n g  a f t e r  t h e  chopper was r ep l aced  by an  aluminum 

mi r ro r  o r  a second mi r ro r  which was coated  with t h e  painL. I n  t he  r a s e  o f  

t h e  p a i n t ,  measurements were made of t h e  r a t i o  r o f  t h e  s i g n a l  de t ec t ed  

when t h e  pain ted  mirror  was i n  p l a c e  t o  t h a t  d e t e c t e d  when the  bare  mi r ro r  

was i n  p lace .  For t he  f e l t  and foam, measurements were made of t h e  r a t i o  

r o f  t h e  s i g n a l  de t ec t ed  when t h e  ba re  mi r ro r  had a  sample o f  f e l t  o r  foam . 

placed i n  f r o n t  o f  it t o  t h a t  d e t e c t e d  wi th  t h e  s anp le  removed. It can be 



seen  from r i g u r e  3 t h a t  t h e  foam was f a r  s u p e r i o r  t o  t he  o t h e r  two abso rbc r s ,  

g iv ing  a  r a t i o  of l e s s  than about one pe rcen t  r e f l e c t i o n  fox a l l  f r equenc ie s  

1 a t  which i c  was examined. Af t e r  ou tgas s ing ,  n e i t h e r  t h e  foam nor t he  p a i n t  

adverse ly  a f f e c t e d  tire p re s su re  i n  our c r y o s t a t :  about 5  X t o r r  a t  

-7  
room temperature and about 10 t o r r  when t h e  c r y o s t a t  was cooled.  

1 The black p a i n t  was used on t h e  e n t i r e  i nne r  s u r f a c e  of the  4 K 

h e a t  s h i e l d  and on the  i n s i d e  of t he  bolometer can. The foam shee t  was 

used i n  t h e  gap between t h e  H and l i g h t  cone, but o u t s i d e  the  112 in .  ho l e ,  

and i n  t he  r eg ion  around the  end of t h e  l i g h t  p ipe .  Small  p i eces  were a l s o  

a t t ached  around t h e  bolometer. 

Heasurement of t h e  Bolometer S i p n a l  . 

As t he  r a d i a t i o n  i s  chopped, o r  turned on and o f f ,  i t  a l t e r n a t e l y  

h e a t s  and coo l s  t he  bolometer,  whose r e s i s t a n c e  thus  f a l l s  and r i s e s .  Tnus 

i f  a cons t an t  c u r r e n t  i s  passed through t h e  bolometer a  vo l t age  varying a t  

t h e  frequency of t he  chopping appears  a c r o s s  i t .  Th i s  is then de t ec t ed  by 

a lock - in  ampl i f i e r .  

f i e  c i r c u i t  used is shown i n  F igu re  4 .  The a c  component of t h e  

vo l t age  a c r o s s  t he  bolometer is d e t e c t e d  by a  P r ince ton  Applied Resel rch  

ER-8 lock- in  amplifier ,(53) u s i n g  a  h igh i q e d a n c e ,  Type A p r e a n p l i f i e r .  

The boloneter  is one arm of a  Wheatstone br idge .  (54) A h e l f p o t  forms one 

of t he  o t h e r  arms s o  t h a t  a  balance may be achieved and de t ec t ed  wi th  a  dc 

n u l l  de t ec to r .  (55) The s e t t i n g  of t h e  h e l i p o t  a t  n u l l  can be converted t o  

t h e  r e s i s t a n c e  o f  t h e  bolometer,  which is used t o  c o r r e c t  f o r  changes i n  

s e n s i t i v i t y  due t o  changes i n  r e s i s t a n c e  caused by moving the  f i l m  out  of 

p lace .  A second h e l i p o t  can be i n s e r t e d  i n t o  the' c i r c u i t  i n  p lace  of t h e  
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f i r s t  by a  swi tch .  One was used when t h e  f i l m  was i n  f r o n t  of the  d e t e c t o r  and 

t h e  o the r  when t h e  c l e a n  s u b s t r a t e  was the re .  This  reduced t h e  necessary  

adjus tments  f o r  each d a t a  po in t .  

Current  Supply f o r  D r i v i n ~  t h e  Film Normal 

For normal s t a t e  measurements t he  f i lms  were d r i v e n  normal by 

pas s ing  a  c u r r e n t  through them.. J o u l e  h e a t i n g  r e s u l t e d  a f t e r  t he  t r a n s i t i o n  

i n t o  t h e  normal s t a t e  had occurred.  Thus t h e  c u r r e n t  had t o  be reduced we l l  

below the  c r i t i c a l  c u r r e n t  be fo re  t h e  f i l m  could become superconduct ing  

again.  S ince  the  j o u l e  h e a t i n g  produced by a  c u r r e n t  a s  l a r g e  a s  t he  

c r i t i c a l  c u r r e n t  might have annealed. a n  amorphous sample, a  s p e c i a l  pre- 

c a u t i o n  was taken t o  e l e c t r o n i c a l l y  reduce the  cu r r en t  a s  t he  f i l m  went 

A r e g u l a t e d  power supply,(56) programed t o  supply a  cons t an t  

vo l t age  at  i ts  output  t e rmina l s ,  was used t o  supply t h e  c u r r e n t  t o  t h e  

f i lm.  The vo l t age  drop a c r o s s  a one ohm r e s i s t o r ,  i n  s e r i e s  wi th  t h e  f i lm ,  

enabled t h e  c u r r e n t  t o  be measured. Thus the  vo l t age  a t  t he  ou tpu t  of t h e  

ohm r e s i s t o r ,  and t h e  l eads  t o  t he  f i lm .  The vo l t age  ac ros s  t h e  f i l m  was 

z e r o  i n  t h e  superconduct ing  s t a t e .  To d r i v e  t h e  f i l m  normal, t he  vo l t age  

a t  t he  power supply  was increased slowly u n t i l  t h e  c u r r e n t  reached t h e  

c r i t i c a l  c u r r e n t  of t he  f i lm .  Voltage appeared ac ros s  t he  f i lm ,  and t h e  

r egu la t ed  power supply  then decreased t h e  cu r r en t  t o  mainta in  t h e  oarne 

vo l t age  a t  i t s  output .  The r e s u l t i n g  c u r r e n t  through t h e ' f i l m  was s l i g h t l y  

more than necessary  t o  keep i t  i n  t he  normal s t a t e .  The r educ t ion  i n  

c u r r e n t  was by a  f a c t o r  o f  between t h r e e  and f i v e .  



I n f r a r e d  E r r o r s  

Both random and sys t ema t i c  e r r o r s  may a r i s e  i n  t he  f a r  i n f r a red  1 

d a t a .  F i r s t  random e r r o r s  rmst be considered .  These might be due t o  
1 

e l e c t r o n i c  no i se  o r  t o  temperature f l u c t u a t i o n s  which a f f e c t  t he  bolometer 
T 

1 s e n s i t i v i t y .  A good e s t i s t e  of t he  magnitude of t hese  e r r o r s  can be 

obta ined by examining the  s c a t t e r  i n  t he  normal s t a t e  d a t a ,  p l o t t e d  

i n  F igu res  27 through 35 i n  t he  Appendix. Each normal s t a t e  d a t a  

po in t  i n  each of t hese  f i g u r e s  has  been div ided by the  average of a l l  the  

p o i n t s  i n  t h a t  f i g u r e .  

It can  be  s e e n  t h a t  t hese  d a t a  u s u a l l y  l i e  w i th in  t h r e e  percent  

o f  t h e i r  average.  Random e r r o r s  i n  t h e  superconducting d a t a  a r e  probably 

sma l l e r  s i n c e ,  a s  w i l l  be mentioned l a t e r ,  t he  bolometer temperature was 

lower f o r  t hose  measurements and t h e  s igna l - to -no i se  r a t i o  h igher .  

Sys temat ic  e r r o r s  might be o f  s e v e r a l  types  a l s o .  Ginsberg 

h a s  c a l c u l a t e d  t h a t  t he  e f f e c t  of t h e  non-normal inc idence  of some of t he  

r a d i a t i o n  from the  f/1.5 monochrometer i s  l e s s  t h a n  0 . 2  percent .  He a l s o  

found t h a t  t h e  r a d i a t i o n  from a monochrometer e s s e n t i a l l y  i d e n t i c a l  t o  the  

one used i n  t h i s  experiment was f r e e  of harmonics of t he  fundamental t o  

b e t t e r  t han  99.5 pe rcen t .  

I r o n i c a l l y ,  du r ing  these  experiments i t  was not  contamination 

by h ighe r  f r equenc ie s ,  but r a t h e r  lower ones,  which was of concern.  The 

measured t r ansmis s ion  curves  conta ined bumps a t  t h e  f r equenc ie s  a t  which 

main g r a t i n g s  were changed. These bumps, never l a r g e r  than about f i v e  

pe rcen t ,  could be expla ined by assuming t h a t  t he  g r a t i n g  used a t  t h e  

f requency below t h e  bump, with t h e  l a r g e r  groove spacing and sma l l e r  ang le ,  



allowed more low frequency contamination t o  pass.  Low frequency contamina- 

t i o n  is enhanced by t h e  low-pass f i l t e r s  used t o  remove t h e  high frequency 

contamination.  An ex t ens ive  experimental  s ea rch  was made f o r  s t r a y ,  Iov  

frequency r a d i a t i o n  by cover ing va r ious  su r f aces  w i th in  t he  monochrowter  

with t he  previously-mentioned lossy  foam shee t .  No improvement was 

obta ined.  Two a t t empt s  were made t o  develop a  ~ o d e l  f o r  t h e  contamination.  

The f i r s t  cons idered  t h e  f i n i t e  number of grooves i n  the  main g r a t i n g ;  t h e  

second, t he  s h i f t  i n  phase of r a d i a t i o n  impinging upon two ad jacen t  grooves 

of t he  main g r a t i n g  because of t h e  s p h e r i c a l ,  r a t h e r  than pa rabo l i c ,  mi r ro r  

i n  t h e  monochrometer. Nei ther  c a l c u l a t i o n  showed a n  e f f e c t  of s u f f i c i e n t  

magnitude. It is d i f f i c u l t  t o  a s s e s s  the  source  of t h i s  problem a s  no  

ins t ruments  a r e  a v a i l a b l e  t o  measure t h e  frequency spectrum from the  mono- 

chrometer.  It may be t h a t  with g ra t ings  such a s  t hese ,  made with s t anda rd  

machine shop t o o l s ,  e r r o r s  i n  groove spacing a r e  s u f f i c i e n t l y  l a r g e  t o  

produce t h i s  e f f e c t .  S i m i l a r  bumps i n  t he  d a t a  of Palmer and Tinkham 

may de r ive  from t h e  same o r ig in .  

Temperature R e ~ u l a t i o n  

I n  o rde r  t o  measure t h e  t r a n s i t i o n  temperature of t he  f i l m s ,  it 

was necessary  t o  be a b l e  t o  a d j u s t  t h e  temperature of t he  f i l m  and have it 

remain s t a b l e  f o r  a t  l e a s t  a  few minutes. To achieve  t h i s  t he  carbon 

r e s i s t o r  was i n s e r t e d  i n t o  one arm of a n  a c  Wheatstone b r idge ,  t h e  e r r o r  

s i g n a l  from t h e  br idge  ampl i f ied  by a  narrow band a m p l i f i e r ,  and used t o  

c o n t r o l  a  dc c u r r e n t  t o  t h e  h e a t e r .  The method and c i r c u i t r y  were developed 

by Blake, Chase, and  axw well(*^) and Blake and Chase,(59) and the  use  o f  
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t h e  appa ra tus  was desc r ibed  by In  t h i s  c r y o s l a t ,  s h o r t  term 

r e g u l a t i o n  o f  I UZK a t  about 7 K was achieved. 

i During t h e  f a r  i n f r a r e d  measurements a l l  va lves  i n  the  pumping 

l i n e s  were complete ly  opened t o  provide maximum pumping speed and the  

lowest  p o s s i b l e  tempera ture .  The temperature was s u f f i c i e n t l y  s t a b l e  t h a t  

no r e g u l a t i o n  was necessary .  

Res i s t ance  Heasurerient 

The r e s f s t a n c e  05 the  f i l m  was ueasured wi th  both an  a c  and a  dc 

technique.  t h e n  making a n  a c  measurement, an  a c  cons t an t  c u r r e n t  a t  975 Hz 

was passed througI5 t h e  f i l m  and the  r e s u l t i n g  a c  vo l t age ,  which was propor- 

t i o n a l  t o  t h e  r e s i s t a n c e ,  de t ec t ed  by a lock- in  a m p l i f i e r .  As adequate 

s e n s i t i v i t y  was a v a i l a b l e  when us ing  only very  s m l l  c u r r e n t s ,  j ou l e  hea t ing  

was s u f f i c i e n t l y  s m a l l  t o  permit  t h i s  mthod  t o  be uscd t o  determine the  

r e s i s t i v e  t r a n s i t i o n  temperature of the f i lm.  l%e mximum c u r r e n t  uscd was 

120 nA. Jus t  above t h e  t r a n s i t i o n  temperature,  determined by measuring the  

a c  r e s i s t a n c e ,  t h e  dc  r e s i s t a n c e  was measured i n  order  t o  c a l i b r a t e  the  a c  

measurement. By p l a c i n g  t h e  f i l m  i n  s e r i e s  with a  1.5 V b a t t e r y ,  a  c u r r e n t -  

l i m i t i n g  r e s i s t o r ,  and a c a l i b r a t e d  carbon r e s i s t o r ,  a  potent iometer  (61) 

could  be used t o  rpasu re  t h e  vo l t age  ac ros s  t h e  f i l m  and the  c a l i b r a t e d  

r e s i s t o r ,  enab l ing  t h e  r e s i s t a n c e  o f  t he  f i l m  t o  be ca l cu l a t ed .  

A n e a r l y  i d e n t i c a l  dc technique was used t o  measure t he  r e s i s t a n c e  

of t h e  c a l i b r a t e d  germanium thermometer. A 6 V s t o r a g e  c e l l  and a  s t anda rd  

r e s i s t ance (62 )  hav ing  a  low temperature c o e f f i c i e n t  permi t ted  a  more 

a c c u r a t e  measurenent of t h e  c u r r e n t  than used f o r  measurement of t he  f i l m  



Opt i ca l  Thickness Measurement 

Fi lm th i cknesses  were measured o p t i c a l l y  f o r  most o f  t he  f i l m  

by t h e  method o f  Tolansky. (63)  The f i lms  of b i s o r ~ t h  and ga l l i um were 

warmed t o  room tempera ture  i n  t h e  vacuum of t h e  c r y o s t a t ,  exposed t o  t h e  

atmosphere f o r  up t o  s i x  hours ,  and then i n s e r t e d  j n t o  ano the r  evapora to r  

where a r e f l e c t i v e  c o a t i n g  of s i l v e r  was evaporated on to  them. O p t i c a l  

i n t e r f e r r o m e t r i c  measurements were made a t  t h e  edges o f  t h e  f i l m s  which 

were over one o f  t h e  gold e l e c t r o d e s .  Thus t h e  d i f f e r e n c e  between t h e  
I 

t h i ckness  o f  both the  gold e l e c t r o d e  and t h e  f i l m  and t h e  gold e l e c t r o d e  

a lone  was measured. The method i s  f u r t h e r  d i scussed  by ~ m i t h ' ~ ~ )  and 

PROCEDURE FOR TAKING AND ANALYZING 1-dC DATA 

Now t h a t  t h e  va r ious  p i eces  of expe r imfn ta l  equipment have been 

desc r ibed ,  i t  is p o s s i b l e  t o  e x p l a i n  how they were used i n  a t y p i c a l  

exper imenta l  run.  Also  d i scussed  a r e  t h e  methods used t o  conve r t  t h e  

ueasured q u a n t i t i e s  i n t o  a form which can be  compared with theory .  

Two e s s e n t i a l l y  d i f f e r e n t  experiments were performed: 

measurement of t h e  f a r  i n f r a r e d  p r o p e r t i e s  of a t h i n  f i l m  sample and o f  i t s  

t r a n s i t i o n  temperature.  As t h e  former was more involved, t h e  approach used 

t h e r e  i s  p re sen ted  f i r s t .  



F a r  Tntrared  Heasurements 

Pfasureruents of t he  f a r  i n f r a r e d  r a d i a t i o n  t r ansmi t t ed  through 

4 t h e  f i l m  vcre f i r s t  m d e  a s  a func t ion  of frequency f o r  t he  superconducting 
4 

s t a t e ,  Then t h e  measurements werc repeated  with t he  f i l m  i n  t h e  normal i 
4 s t a t e .  A 
1 

X I n  t h e  superconducting s t a t e ,  t h e  s l i d e  was f i r s t  moved s o  t h a t  

t h e  s u b s t r a t e  wi th  t h e  f i l m  on i t  was between t h e  l i g h t  p ipe  and d e t e c t o r .  

Af ter  t h e  ou tpu t  of t h e  lock- in  ampl i f i e r  had co?e t o  equ i l i b r ium,  the  

ou tpu t  was recorded on a s t r i p  c h a r t  r eco rde r  f o r  a minimum of twenty t imes 

t h e  t ime cohs t an t  of t h e  lock- in  ampl i f i e r .  Then t h e  n u l l  d e t e c t o r  was 

switched i n t o  t h e  c i r c u i t ,  t he  Wheatstone br idge  balanced and t h e  s e t t i n g  of 

t k e  h e l i p o t  recorded. Next the  s l i d e  was moved t o  p o s i t i o n  the  c l e a n  sub- 

s t r a t e  between t h e  l i g h t  p ipe  and d e t e c t o r  and the  above measurements 

repeated .  F i n a l l y  a new frequency was s e l e c t e d  by a d j u s t i n g  t h e  s e t t i n g  of 

t h e  main g r a t i n g  of t h e  monochrameter and changing f i l t e r s .  This  procedure 

was r epea t ed  u n t i l  t he  des i r ed  frequency range had been spanned; i t  usua l ly  

took n e a r l y  twenty-four working hours ,  spread over two days. 

Norm1  s t a t e  measurements were taken i n  t h e  saw? m n n e r  a s  t h e  

superconduct ing  ones except t h a t  a c u r r e n t  s u f f i c i e n t l y  l a r g e  t o  d r i v e  t h e  

f i l m  normal was passed through it. A cu r ren t -vo l t age  p l o t  was produced on 

an x-y p l o t t e r ,  enab l ing  the  minimm c u r r e n t  f o r  which the  f r lm  was ohmic t o  

be  s e l e c t e d .  The c u r r e n t  pas s ing  through t h e  normal f i l m  produced jou le  

hea t ing .  Thermal equ i l i b r ium obta ined i n  s e v e r a l  minutes,  a f t e r  which f a r  

i n f r a r e d  nmsurements  were made. 



'4 
I These normal s t a t e  r e s u l t s  were found, by ex t ens ive  p re l imina ry  

f a r ea su rewnt s ,  t o  be independent of frequency wi th in  a  few pe rcen t .  Thus 

for t h e  bismuth and ga l l i um f i l m s ,  normal s t a t e  d a t a  were t aken  a t  only  

abou t  one - th i rd  a s  many f r equenc ie s  a s  superconducting da t a .  

l i n a l y z i n ~  t h e  Far  I n f r a r e d  Data 

J o u l e  h e a t i n g  r e s u l t e d  i n  a  bolometer tempera ture  about 0.3 K 

h i g h e r  f o r  t h e  c o r m 1  s t a t e  m e a s u r e z n t s  t han  those  f o r  t h e  superconducting 

s t a t e .  The bolometer s e n s i t i v i t y  was thus  d i f f e r e n t .  A procedure f o r  

c o r r e c t i n g  f o r  t h i s  d i f f e r e n c e  was devised  by ~ i n s b e r ~ ' ~ ~ )  and was employed 

wi th  t h e s e  d a t a .  S ince  superconduct ing  d a t a  were a l l  t aken  a t  very  nea r ly  

t h e  same tempera ture  and a l l  normal s t a t e  d a t a  talcen ve ry  c l o s e  t o  another  

tempera ture ,  t h i s  c o r r e c t i o n  reduced approximately t o  m l t i p l y i n g  a l l  va lues  

of t h e  t r ansmis s ion  r a t i o  by a  cons t an t ,  which was about  0.8 t o  0.9, with 

v a r i a t i o n s  o f  o rde r  0.1 percent .  

The normal s t a t e  d a t a  were taken t o  be c o n s t a n t  a f t e r  the  

previous ly-discussed c o r r e c t i o n .  The average va lue  o f  t h e  c o r r e c t e d  d a t a  was 

used i n  c a l c u l a t i n g  t h e  t r ansmis s ion  r a t i o .  

To ensu re  t h a t  t he  t r ansmis s ion  r a t i o  T /T had been a c c u r a t e l y  s n  

determined, a n  a d d i t i o n a l  procedure was used t o  de termine  i t  exper imenta l ly  

a t  m e  frequency. Af t e r  normal s t a t e  measuremsnts were completed,  t h e  

r e s i s t a n c e  o f  t h e  bolometer was noted f o r  each p o s i t i o n  of t h e  s l i d e .  Then 

wi th  t h e  f i l m  i n  t h e  superconducting s t a t e ,  i .e . ,  wi th  no c u r r e n t  pass ing 

through t h e  f i lm ,  t he  h e a t e r  was used t o  s i m l a t e  t h e  j ou le  h e a t i n g  i n  t h e  

f i lm.  The h e a t e r  c u r r e n t  was ad jus t ed  t o  produce the  same bolometer 

r e s i s t a n c e  a s  t h a t  which obta ined i n  t h e  normal s t a t e  measurements; t hus  
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i n  t h i s  superconducting s t a t e  measurement, t h e  b o l o w t e r  had t h e  same 

s e n s i t i v i t y  a s  i t  had i n  t h e  normla1 s t a t e  measurement. Thus a n  accu ra t e  

measurenent of T /T was poss ib l e .  ,Because t h e  h e a t  app l i ed  inc reased  t h e  
s n  

bolometer temperature and t h e r e f o r e  reduced i t s  s i g n a l - t o - n o i s e  r a t i o ,  and 

bo i l ed  away the  l i q u i d  helium i n  t h e  i nne r  tank a n  a n  inconve r~ ien t  r a t e  a s  

we l l ,  only  a  l imi t ed  number of superconduct ing  d a t a  were taken i n  t h i s  

fashion.  The remaining d a t a  were mu l t ip l i ed  by a cons t an t  r a t i o ,  of about 

0.95, determined by these  measureffients, t o  account f o r  t h e  d i f f e r e n c e  i n  

s e n s i t i v i t y .  

T r a n s i t i o n  Temperature Fleasuremcnt and Analys is  

The t r a n s i t i o n  tempera ture  was measured by c o n t r o l l i n g  t h e  f i l m  

tempera ture  a t  succes s ive ly  h ighe r  tempera tures ,  pa s s ing  through the  

t r a n s i t i o n .  At each temperature t h e  r e s i s t a n c e  of t h e  f i l m  was measured, 

u s i n g  t h e  a c  technique descr ibed aboGe, wi th  t h e  ou tpu t  of t he  l ock - in  

a m p l i f i e r  recorded on a  s t r i p  c h a r t  recorder .  S imul taneously  the  r e s i s t a n c e  

o f  t h e  germanium thermometer was determined. ~ r o m  these  measurements a  p l o t  

o f  f i l m  r e s i s t a n c e  ve r sus  temperature could be obta ined.  Tc was chosen t o  

be t h e  temperature a t  which the  r e s i s t a n c e  was one-half  of i t s  normal s t a t e  

About 0.2 K above t h e  t r a n s i t i o n  tempera ture ,  a  tempera ture  h igh 

enough s o  t h a t  t he  f u l l  normal s t a t e  r e s i s t a n c e  of t he  f i l m  had been 

r e s t o r e d ,  t h e  r e s i s t q n c e  of t h e  f i l m  was measured a c c u r a t e l y  u s i n g  the  dc 



111. THEORY AND NUtlERICAI, CALCULATIOS 

I n  o rde r  t o  i n t e r p r e t  t h e  t r ansmis s ion  r a t i o  T /T which was 
s n  

exper imenta l ly  measured by the  appa ra tus  d i scussed  i n  Sec t ion  11, i t  i s  

necessary  t o  consider  the  p r e d i c t i o n s  made p o s s i b l e  by r a t h e r  soph i s t i ca t ed  

t h e o r e t i c a l  techniques developed by s o l i d  s t a t e  t h e o r i s t s .  To begin,  the  

c u r r e n t  i n  a  conductor i s  w r i t t e n  a s  a n  i n t e g r a l  of the  f i e l d .  I n  t h e  i n t e g r a l  

i s  a kernel -which can be der ived f o r  superconductors.  I n  two l i m i t i n g  cases  

it is shown t h a t  the  i n t e g r a l  exp res s ion  produces a  r e l a t i v e l y  simple r a t i o  

of t h e  conduc t iv i ty  i n  t he  superconduct ing  s t a t e  t o  t h a t  i n  t he  normal s t a t e .  
- .  

Two gene ra l  theorems from o p t i c s  a r e  s t a t e d .  Then t h e  conduc t iv i ty  der ived 

for  weak-coupling superconductors is given. The l i m i t a t i o n s  of t h i s  r e s u l t  

are d i scussed ,  p r i o r  t o  s t a t i n g  the  more complicated express ion f o r  s t rong-  

coup l ing  superconductors.  F i n a l l y  t o  be d i scussed  a r e  t h e  numerical  ca l cu l a -  

t i o n s  necessary  t o  desc r ibe  t h e  r e s u l t s  of t h i s  experiment on strongly-coupJ.ed 

superconductors.  By us ing  t h e  two theorems from o p t i c s ,  t h e  genera l  f e a t u r e s  

o f  t h e  d i f f e r e n c e s  i n  behavior between the  two types  o f  superconductors a r e  

expla ined.  

RESPONSE OF A NORbL4L CONDUCTOR TO Ah' ELECTROKIGNETIC FIELD 

The response of a  conductor t o  a n  e lec t romagnet ic  f i e l d  can 

g e n e r a l l y  be descr ibed by a  complex conduct iv i t ;  which i s  the  cons t an t  of 

p r o p o r t i o n a l i t y  between t h e  Four i e r  t ransforms of t h e  e l e c t r i c  f i e l d  

and t h e  cu r r en t :  
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I 
a s  a  s c a l a r .  As s t a t e d  i n  S e c t i o n  I ,  Re(u) E u and Im(o) E -3. 

1 2' 
I 
1 For a metal  i n  t he  normal s t a t e ,  t h e  response  can be simply 

w r i t t e n  i n  time and space  by us ing  the  well-known Chambers formula(65): 

A 1 s  t h e  e l e c t r o n i c  mean f r e e  path ,  n  i s  t he  concen t r a t ion  o f  f r e e  e l e c t r o n s ,  

t ransform of t h i s  express ion is u s e f u l  f o r  e v a l u a t i n g  l i m i t i n g  forms of t he  

These equ iva l en t  express ions  a r e  simply s t a t emen t s  t h a t  when t h e  e l e c t r i c  

f i e l d  v a r i e s  r a p i d l y  over a  mean f r e e  pa th ,  t h e  e l e c t r o n s  remmber  t hese  

v a r i a t i o n s  s ince  they were l a s t  s c a t t e r e d :  thus  t h e  e l e c t r i c  f i e l d  is -. 4 

eva lua t ed  a t  time t - R/vo. A non-local r e l a t i o n  is descr ibed:  J ( r , t )  - 1 a2 
depends no t  on z (? , t ) ,  but  on a n  average  about i! of zes,t). Using E = - - - a t  

and e x p l i c i t l y  i n d i c a t i n g  a Four i e r  t ransform over  f requency,  (2) can  be 

v r i t t e n  
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1 RESPONSE OF A SUPERCOSDITCTOR TO A?? ELECTRO?WGhTTIC FIELD 

I n  the  superconducting s t a t e  a  r e s u l t  s i m i l a r  t o  the  Chambers 

express ion is found: 

-. -, 
R[R . $(;')I I ( ~ , R , T ) ~ " ~ ' ~  

The k e r n e l  I((o,R,T) is q u i t e  complicated and i n  general  must be evaluated 

numerically.  The express ion (5) can be shown t o  con ta in  (4)  a s  a  l i m i t i n g  

case .  

For tunate ly ,  i n  the  case  of very t h i n  f i lms ,  such a s  the  ones 

s t u d i e d  i n  t h i s  experiment,  a g r e a t  s i m p l i f i c a t i o n  occurs.  I n  t h e  theory of 

superconduct iv i ty  t h e r e  is a  minimum length  5 ,  c a l l e d  t h e  coherence length ,  

t h e  coherence length  i n  the  absence of  impurity s c a t t e r i n g ,  L i s  the  

w a n  f r e e  path ,  and c i s  a constant  of order  un i ty ,  then 5 = ( ~ i ~ i - d ~ . t - l ) - ~ .  

When the  e lec t romagnet ic  f i e l d  pene t r a t e s  i n t o  the  superconductor only 

s l i g h t l y ,  A << 5 (where is the  pene t r a t ion  depth), o r  i n  our case ,  when the 

th i ckness  d  of t h e  f i l m  i s  smal l  compared t o  5 ,  then I((u,R,T) can be taken t o  

be a cons tan t  over the  r eg ion  of i n t e g r a t i o n ,  eva lua t ing  i t  a t  R = 0. I n  

t h i s  case  (5) i s  much more t r a c t i b l e  because the  remaining i n t e g r a l  i s  of 

t h e  same form a s  t h a t  f o r  t he  normal s t a t e .  Thus the  wave vec to r  independent 

r a t i o  u~/u ,  can be formed: 
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- i n h  w (6) 

=n 

Thi s  is the  non-local l i m i t  of  ( 5 ) ,  c a l l e d  t h e  Pippard ,  o r  extreme anomalous, 

Another u s e f u l  l i m i t i n g  form is f o r  t h e  London, o r  extreme l o c a l  

l i m i t ,  i n  which .t << 5,. Here a  f a c t o r  exp (-R/i) i n  t h e  in tegrand causes  the  

i n t e g r a l  t o  be dominated by I(w,O,T).  Thus aga in . the  k e r n e l  can  be brought 

o u t s i d e  t h e  i n t e g r a l ,  once more o b t a i n i n g  t h e  r e s u l t  (6). 

Weak-Coupling Resul t  

Ma t t i s  and Bardeen(ll) have eva lua t ed  (6) acco rd ing  t o  t h e  BCS 

d e s c r i p t i o n  of supe-;conductivity,  a s  was done independent ly  by Abrikosov, 

Gor'kov, and Khalatnikov. (67) For f i n i t e  tempera ture  t h e i r  r e s u l t  must be 

eva lua t ed  numerica l ly ,  but f o r  z e r o  tempera ture  t h e r e  is a  s imple  form: 

where k = 1 2 ~ ~ -  W I / 1 2 w g + ~  1,  kg - (1 - k5', and E(k) and K(k1 a r e  t h e  

complete e l l i p t i c  i n t e g r a l s .  Of course ,  a;/u, = 0 f o r  w < 2~ 

If the  l i m i t a t i o n s  on t h e  MB r e s u l t  e r e  t o  be c l e a r l y  understood it 

is necessary  t o  examine t h e  assumptions t hey  have made. To begin,  MB based 

t h e i r  c a l c u l a t i o n  on the  BCS theory  o f  supe rconduc t iv i ty .  I n  t u r n  BCS 

pos tu l a t ed  a  p a i r i n g  i n t e r a c t i o n  between e l e c t r o n s  of oppos i t e  s p i n  and 

momentum. Bardeen and had shown t h a t  t h e  ma t r ix  element governing 
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4 e - O *  -. 
t h e  s c a t t e r i n g  of  e l e c t r o n s  with momentum k and kr i n t o  kd-X and k"X, by 

... 
exchange of  a phonon X ,  is 

where )I_ is  the  matr ix  element f o r  s i n g l e  e l e c t r o n  s c a t t e r i n g  by the  
X 

electron-phonon coupling, C, is the  Bloch e l e c t r o n  energy masured  from the  
k 

Permi s u r f a c e  and hw, is the phonon energy. Th i s  matr ix  element i s  negat ive  
X 

f o r  €- - €_ I < 
1. BCS made the  f u r t h e r  assumption t h a t  f o r  I *  k + 7  l r i l  5 k B  O D  (where OD is the  Debye temperature),  t he  n r t r i x  element i s  nea r ly  

cons tan t  with a value  

X 

2 2 
To t h i s  BCS added the  Coulomb repu l s ion  4ne /Xeff .  Then f o r  f requencies  

below OJ - wD they approximated the  matr ix  element by -V, a constant  

a t t r a c t i v e  p o t e n t i a l .  For h ighe r  f r equenc ie s  t h e  ma t r ix  e l e m n t  was assmed t o  

be zero.  Thus i t  can be seen t h a t  BCS removed a l l  d e t a i l s  of the  phonons 

except  two: the  cu to f f  frequency w and the  average i n t e r a c t i o n  -V between 

e l e c t r o n s .  

The g r e a t e s t  c o n t r i b u t i o n  t o  the  a t t r a c t i v e  i n t e r a c t i o n  between 

e l e c t r o n s ,  descr ibed by the  matr ix  element (8),  comes from v i r t u a l  exc i t a -  

t i o n s  wi th  energy of t h e  o rde r  of  t he  Debye energy hwD. It is  poss ib l e ,  

hcwever, f o r  such a r e a l  e x c i t a t i o n  with t h i s  energy t o  decay by emission o f a  
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i 
I phonon, producing a f i n i t e  l i f e t i m e  and non-vanishing l e v e l  width f o r  t h a t  
4 I 

t s t a t e .  The XS theory is v a l i d  when t h e  l e v e l  x i d t h s  a r e  smal l  enough, 

1 compared t o  the  ene rg ie s ,  f o r  t h e  s t a t e s  t o  be reasonably well-defined. This 
4 1 
4 
1 is the  czse  f o r  superconductors i n  which t h e r e  i s  weak electron-phonon 
E 
1 coupling. 

There do e x i s t  supercondzctors,  however, such a s  lead and mercury, 

which have low Debye temperature and high t r a n s i t i o n  temperature,  i n  which 

t h e  electron-phonon coupl ing is  s u f f i c i e n t l y  l a r g e  t h a t  t he  l i f e t i m e s  become 

s o  s h o r t  t h a t  t he  widths of  s t a t e s  nea r  the  Debye frequency a r e  comparable t o  

t h e i r  energjes .  Hence an  approach o t h e r  than t h a t  of  BCS is needed. 

S t ron~-Coup l ing  Resul t  

Using a Green's func t ion  technique, ~ i g d a l ' ~ ~ )  showed how t o  avoid 

t h i s  problem i n  desc r ib ing  the  electron-phonon i n t e r a c t i o n  i n  the  normal 

s t a t e .  ~ l i a s h b e r g ' ~ ~ )  and ~ a n b u ' ~ ~ ?  gave the  a p p l i c a t i o n  t o  superconductors 

and S c h r i e f f e r ,  Scalapino,  and  ilki ins(^*) added t h e  Coulomb repu l s ion  and 

showed t h a t  t he  technique could be used t o  accur-ately desc r ibe  tunnel ing i n t o  

strongly-coupled superconductors.  

The v i r t u e  of  t h e  Green's func t ion  approach i s  t h a t  i t  is not an  

expansion i n  a smal l  electron-phonon coupl ing cons tan t ,  but  r a t h e r  i s  

accu ra t e  t o  o rde r  (*/a5, the  square  r o o t  o f  the  e l ec t ron - ion  mass r a t i o ;  

t h a t  is,it i s  good t o  about a t e n t h  of  a percent .  

The theory produces the  s o - c a l l e d  E l i a shhe rg  gap equat ions  which 

d e f i n e  a complex frequency-dependent gap pa rane te r  A(w) and a r e n o r m l i z a t i o n  

p a r a w t e r  Z(&). The gap parameter A(w) corresponds c l o s e l y  t o  the  cons tan t  

BCS energy gap. I t s  imaginary p a r t  a r i s e s  because of  t h e  l i f e t i m e  e f f e c t s  



and i t s  r e a l  p a r t  f a l l s  below z e r o  f o r  h igh f r equcnc ie s  at. hrhich the  Bardeen- 

Pines  i n t e r a c t i o n  becomes r epu l s ive .  The gap parameter has  the  proper ty  fl int  

By applying these  r e s u l t s ,  ~ a r n ' ~ ~ )  was a b l e  t o  de r ive  t h e  frequency- 

dependent conduct iv i ty  of a  s t rongly-coupled  superconductor,  This r e s u l t  

appears  i n  t he  same form a s  t h a t  f o r  weakly-coupled superconductors,  

a l though a c t u a l l y  Nan's ke rne l  was def ined s o  t h a t  it encompassed t h e  f a c t o r  

exp  (-RIA) i n  (2), ( 4 ) ,  and (5). Again i n  the  extreme anomalous l i m i t  one 



! Here h - 1, and :a,b] denotes the a lgebra ica l ly  larger  o f  the quant i t i e s  61 

4 : and b. Using l ( w )  = A(w ) = w the f i r s t  equation and the second term of 
3 6 g' 

the second equation reduce t o  the FIB r e s u l t .  The f i r s t  t ern  o f  the equation 

f o r  cr /a i s  s t r i c t l y  a strong-coupling r e s u l r .  2 n 



- - 
The r a t i o  TS/Tn is then  equa l  t o  Ts/Tn. 

I f  t he  theory  c o r r e c t l y  p r e d i c t s  t h a t  o /o = 0 f o r  f r equenc ie s  
1 n 

by o2/un and R. With i n c r e a s i n g  UI below the  gap, t he  r a t i o  T s / c  thus 

i n c r e a s e s  because 0 /U dec reases  t he re .  At t h e  gap i s  a d iscont inuous  2 n 

change i n  the  s lope  of Ts/Tn, r e f l e c t i n g  the  onset  of abso rp t ion  and 

desc r ibed  by a non-zero al/un. Above t h e  gap, however, t h e  t ransmiss ion 

r a t i o  f o r  s m a l l R  may cont inue  t o  i nc rease ,  a s  u2/un is dec reas ing  s o  

r a p i d l y  t h a t  i t  more than compensates f o r  t h e  abso rp t ion .  Eventual ly  

decreases  t o  u n i t y  a t  very  h igh f requencies .  

S ince  t h e  peak does n o t  n e c e s s a r i l y  occur a t  t h e  gap frequency, i t  

is obviously not  poss ib l e  t o  a s s i g n . a  measured frequency of t h e  peak t o  t he  

gap frequency. Nei ther  can  t h e  d i s c o n t i n u i t y  i n  s l o p e  a t  t he  gap be expe r i -  

menta l ly  observed wi th  p re sen t  technology. I n  f a c t ,  even i n  a t h e o r e t i c a l  

p l o t  o f  t h e  t ransmiss ion curve t h e  d i s c o n t i n u i t y  is d i f f i c u l t  t o  s ee  i f  R is 

smal l .  Thus the  gap must be determined by f i t t i n g  a t h e o r e t i c a l  curve t o  

the d a t a  over a range o f  f r equenc ie s  about  t h e  gap. 

OPTICAL THEOREf5 

Kramers-Kronig Re la t ions  

Leaving a s i d e ,  f o r  t h e  moment, t h e  d e t a i l e d  microscopic equat ions ,  

m c h  can be learned from very  g e n e r a l  arguments a lone .  F i r s t  a very genera l  



r e l a t i o n s h i p  e x i s t s  between t h e  r e a l  and imaginary p a r t s  o f  a  response 

func t ion  which desc r ibes  a l i n e a r  r e l a t i o n  between two v a r i a b l e s ,  which 

r e p r e s e n t s  a  c a u s a l  process ,  and b4tich i s  bounded. Actual ly  i t  i s  s u f f i c i e n t  

f o r  t h e  func t ion  t o  be a n a l y t i c  i n  t he  upper h a l f  plane: l i n e a r i t y ,  c a u s a l i t y ,  

and boundedness imply t h i s ,  hovever.  Applied t o  conduc t iv i ty  t hese  Krsmers- 

~ r o n i $ j ( ~ ~ )  r e l a t i o n s  a r e  

2 '=m2(w)dw 
0 ( w )  = -  l o  n p i  

+ cons t an t  . (12a) 

0 

(12b) 

where P denotes  t he  p r i n c i p a l  va lue  o f  t h e  i n t e g r a l .  This  form of t hese  

equat ions  is u s e f u l  i n  t h e o r e t i c a l  cons ide ra t ions .  

Experiments, however, ~ a s u r e  t ransmiss ion,  r e f l e c t i o n ,  o r  

abso rp t ion .  I n  p a r t i c u l a r ,  a complex t r ansmis s ion  c o e f f i c i e n t  t = I tl exp(i0) 

can  be def ined which r e l a t e s  t h e  ampl i tude  and phase of a  t r ansmi t t ed  wave t o  

t h a t  of a n  inc iden t  wave. A Kramers-Kronig r e l a t i o n  a l s o  e x i s t s  f o r  t h i s  

The inve r se  t ransform a l s o  e x i s t s ,  but i s  no t  u s u a l l y  needed. The v i r t u e  

o f  t h i s  equa t ion  i s  t h a t  if one wishes t o  perform a  t ransform on some 

t ransmiss ion d a t a  he  can s i n p l y  perform a n  i n t e g r a l  over  t he  measured 

t r ansmis s ion  amplitude t o  o b t a i n  t he  phase s h i f t .  The conduc t iv i ty  can then 

be  c a l c u l a t e d  a l g e b r a i c a l l y  from t h e s e  two q u a n t i t i e s .  I f  t h e  t ransform i s  



computed with r e l a t i o n s  f o r  conduc t iv i ty ,  a n  i t e r a t i v e  procedure w i l l  have t o  

be used, and p r o b l e m  of convergence nay a r i s e .  (2 1) 

The d i f f i c u l t y  i n  applying (13) i s  t h a t  the  t ransmiss ion r a t i o  i s  

not  known f o r  211 frequencies .  Thus an  e x t r a p o l a t i o n  of the  measurements t o  

o t h e r  f requencies  mst be made. I n  t h e  case  of superconductors,  Ts/Tn i s  not 

known f o r  l o w  f requencies  where it is expected t o  change with frequency 

almost a s  f a s t  a s  near  the  gap. Nei ther  is i t  k n a m  f o r  high f requencies  

where t h e o r e t i c a l l y  i t  is expected t o  d e v i a t e  s l i g h t l y  from u n i t y  over a  wide 

frequency range, thus  c o n t r i b u t i n g  s i g n i f i c a n t l y  t o  the  i n t e g r a l  i n  (13). 

Ex t rapo la t ion  of the  measurearnts i n t o  these  r eg ions  with the  a i d  of a  theory 

is poss ib l e ,  but i t  may lead t o  er roneous  r e s u l t s .  A r e l i a b l e  comparison 

between theory and experiment may i n s t e a d  be made by c a l c u l a t i n g  the  exper i -  

mentally determined parameter from t h e  theory. This  is the  type of  comparison 

which is made i n  t h i s  work. 

Sum Rule 

Asecond theorem can be de r ived  from t h e  gene ra l  sum r u l e  f o r  

o s c i l l a t o r  s t r eng ths :  
.-a 

where n. is t h e  number d e n s i t y  of  p a r t i c l e s  wi th  charge ei and mass mi. The 

e l e c t r o n s  dominate the  sum s i n c e  t h e i r  elm is l a r g e r  than t h a t  f o r  the  ions .  

No change occurs i n  t h i s  sum with  the  t r a n s i t i o n  i n t o  the  superconducting 

s t a t e ,  SO t h a t  



l 

a s t a t e n m t  t h a t  t h e  a r e a  unde r ' t he  r e a l  p a r t  of t h e  conduc t iv i ty  curve musf 

be a  constant .  

E x ~ m i n a t i o n  of t h e  XB r e s u l t  shows t h a t  Dl i s  l e r s  than 4 f o r  a l l  

f requencies .  Thus t h e  a r e a  removed i n  t h e  superconducting t r a n s i t i o n  must be 

replaced: t h i s  is done by adding a  d e l t a  func t ion  ~ ( q ) b ( ~ )  a t  t he  o r i g i n  

&ich corresponds t o  energy s t o r e d  i n  t he  form of p e r s i s t e ~ ~ t  c u r r e n t s .  

A(q) i s  g iven by 

0 

a(4 = f Culn(q,w) - als(q,w)!a~. 
0-f. 

m e  d e l t a  f u n c t i o n  term i n  t h e  r e a l  p a r t  of t he  conduc t iv i ty  l eads ,  by the  

Kramers-Kronig r e l a t i o n s ,  t o  a term 2A/m i n  t he  i m g i n a r y  pa r t .  This  te rm 

*I we s h a l l  s e e  l a t e r  t h i s  sum r u l e  may a l s o  be used t o  h e l p  understand the  

d i f f e r e n c e  between t h e  weak- and s t rong-coupl ing r e s u l t s .  

NUMERICAL CALCULATION OF THE CONDUCTIVITY. 

t he  conduc t iv i ty  is a  d i f f i c u l t  p roces s ,  e s p e c i a l l y  i n  t h e  s t rong-coupl ing 

case .  Following is a  d i s c u s s i o n  of t h e  eva lua t ion  of t he  conduct iv i ty  from 

these  formulas 

From t h e  Weak-Coupling Formula 

The conduc t iv i ty  of Ma t t i s  and Bardeen can be evaluated  a t  T = 0 

wi th  a s l i d e  r u l e  and t a b l e  of complete e l l i p t i c  i n t e g r a l s .  For T f 0 i t  has  

been c a l c u l a t e d  f o r  s e v e r a l  tempera tures  by ~ i l l e r ' ' ~ )  and Valdram. 

computer program was prepared by t h e  au tho r  t o  do c a l c u l a t i o n r  a t  any 





The remaining s i n g u l a r i t y  was handled by a  t ransformat ion of coo rd ina t e s ,  

2 2 %  
y n. (W - wg ) . Hence 

which is f r e e  of t he  s i n g u l a r i t y .  While v a r i a t i o n s  on these  i deas  were 

necessary  f o r  s e v e r a l  of t he  s i n g u l a r i t i e s ,  t h i s  s h o r t  d i s cuss ion  does 

i l l u s t r a t e  t h e  t ransformat ions  which were made. 

Two checks were performed t o  v e r i f y  t h a t  t h e  program was ope ra t ing  

c o r r e c t l y .  F i r s t  a  cons t an t  gap parameter was used. I n  t h i s  ca se ,  the  

conduc t iv i ty  should  have reduced numerica l ly  t o  t h e  MB r e s u l t :  i t  did .  

Secondly,  Shaw and ~ w i h a r t ( ~ l )  independently evaluated  oS/0,, f o r  lead  us ing  

2 
a b(w)  c a l c u l a t e d  from a F(w), i n  t u r n  c a l c u l a t e d  by McMillan and Rowell 

(82) 

from t h e i r  exper imenta l  d a t a ;  a. 2 /a n  was obta ined by Kramers-Kronig t r ans -  

forming O~/U,. Our c a l c u l a t i o n s  compared favorably  with t h e i r s :  Ol/on 

agreed t o  b e t t e r  than one p a r t  i n  lo4, a s  good a s  could be expected 

cons ide r ing  t h e  l i m i t a t i o n s  on our  numerical  i n t e g r a t i o n  technique;  o2/un 

agreed t o  about a  few p a r t s  i n  lo3 which, whi le  no t  a s  good agreement a s  f o r  

ol/an, was judged adequate because i n  t h e i r  Kramers-Kronig t ransform,  t hey  

had i n t e g r a t e d  ul/an which i t s e l f  must have conta ined smal l  numerical  e r r o r s .  

It was n o t  s i g n i f i c a n t  t h a t  one of t he  i n t e g r a l s  i n  t h i s  d i r e c t  eva lua t ion  

the h i g h e s t  frequency f o r  which A(w) was a v a i l a b l e  and then terminated .  
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For l ead ,  t h e  naximam e r r o r  i n  t h i s  frequency range from t h i s  cu to f f  was 

e s t i m t e d  t o  be l e s s  t han  0.003 pe rcen t ,  only a  sma l l  p o r t i o n  of t he  

d i f f e r e n c e  between the  two c a l c u l a t i o n s  of a2/an. Add i t i ona l  e r r o r s ,  due t o  

e r r o r s  i n  t h e  va lues  o f  A(w) with  which we were supp l i ed ,  a r e  of unknown 

magnitude. / 

Numerical R e s u l t s  

The conduc t iv i ty  of lead  a s  c a l c u l a t e d  by Shaw and Swihar t ,  wi th  

t h e  eva lua t ion  of t h e  imaginary p a r t  extended t o  h ighe r  f r equenc ie s  i n  t h i s  

work, d i f f e r s  from t h a t  c a l c u l a t e d  by Nan. (22) I n  F igu res  5 and 6 a r e  shown 

t h e  r e a l  and imaginary p a r t s  o f  each c a l c u l a t i o n  a s  w e l l  a s  t h a t  of MB. The 

discrepancy between t h e  two s t rong-coupl iqg r e s u l t s  probably o r i g i n a t e s  i n  

t h e  d i f f e r e n c e  i n  t h e  phonon spectrum assumed i n  t h e  two c a l c u l a t i o n s .  Nam 

used a  gap parameter c a l c u l a t e d  by S c h r i e f f e r ,  Scalapino,  and  ilki ins'^^) 

from a n  approximate phonon d e n s i t y  of sta:es c o n s i s t i n g  of two Lorentz ian  

peaks. This  was shown t o  c l o s e l y  approximate t unne l ing  d a t a  on lead .  Shaw 

and Swihar t ,  however, c a l c u l a t e d  a  gap parameter from a  phonon d e n s i t y  of 

s t a t e s  which was de r ived  from exper imenta l  d a t a  by McMillan 2 n d  Rowell. 

S ince  t h e  l a t t e r  i s  more accu ra t e ,  c a l c u l a t i o n s  of conduc t iv i ty  which a r e  

based on it should  be more a c c u r a t e  t han  those  of Nam. I n  S e c t i o n  N, it 

w i l l  be shown expe r imen ta l ly  f o r  our  t h i n  f i lms  t h a t  t h e  oppos i t e  is t r u e .  

Use of t h e  program t o  c a l c u l a t e  the  conduc t iv i ty  of amorphous 

bismuth and ga l l i um was p o s s i b l e  because o t h e r s  had performed tunne l ing  

experiments which they had analyzed t o  o b t a i n  A @ ) .  I n  f a c t  they were 

b a s i c a l l y  i n t e r e s t e d '  i n  C (Y 2f (w) , t h e  electron-phonon coup1 ing  cons t an t  
A h 1  

t imes  t h e  phonon d e n s i t y  of s t a t e s ,  but  A(w) was, f o r  t h i s  work, a  u s e f u l  











byproduct. The conduc t iv i ty  of amorphous bismilth was c a l c u l a t e d  from a  gap 

paramrtcr  de r ived  by Chcn g G(83) from t h e i r  tunnel ing  d a t a .  Used f o r  

amorphous and 6-phase ga l l i um were pre l iminary  c a l c u l a t i o n s  of those  gap 

parameters ,  de r ived  by G;!ll, Jackson,  and ~ r i s c o e ' ~ ~ ' ~ ~ )  from t h e i r  expe r i -  

mental  work. 

The va lues  of t h e  gap parameter a s  a  f u n c t i o n  of frequency which 

&ere of no i n t e r e s t  i n  t h e  a n a l y s i s  of t unne l ing  d a t a  s i n c e  the  q u a n t i t y  

i nvo lv ing  A(w) which m u l t i p l i e s  t h e  k e r n e l s  i n  t h e  E l i a shbe rg  gap equat ions  

c a l c u l a t i n g  conduc t iv i ty ,  however, s i n c e  one of t h e  i n t e g r a l s  c o n t r i b u t i n g  

meter could  be c a l c u l a t e d  from those  supp l i ed  by us ing  t r . 2  u s e f u l  

p r o p e r t i e s .  (86) F i r s t ,  d ( ~ )  i s  a n  a n a l y t i c  f ~ n c t i o n ' ~ '  and i ts  r e a l  and 

i m g i n a r y  p a r t s  t h e r e f o r e  s a t i s f y  t h e  Kramers-Kronig r e l a t i o n s  i n  (12). 

was c a l c u l a t e d  a s  t h e  KK t ransform of A (w). Obviously, t he  numerical  i n t e -  2 

g r a t i o n  could  not  be c a r r i e d  ou t  t o  i n f i n i t y .  The remaining p o r t i o n  of t h e  

i n t e g r a l  was t r e a t e d  a s  a  cons t an t  and incorpora ted  i n t o  t he  cons t an t  t o  be 

added t o  t h e  t r ans fo rm of A2(w).  The cons t an t  was determined by f i t t i n g  

t i o n  of u2/on does depend upon t h e  accuracy o f  t h i s  t r a n s f o r m t f o n  o f  b2, 

88 the c a l c u l a t i o n  by Shaw and Swihar t  depended upon the  d i r e c t  t r a n s f o r r a t i o n  



and good agreement was found. 

The conduc t iv i ty  r a t i o s  f o r  amrphous  bismuth and gal l ium a r e  shown 

i n  F igu res  7 through 10. In  each case  t h e  MB r e s u l t  i s  shown a l s o .  It i s  

immediately apparent  t h a t  the  s t rong-coupl ing f o r m l i s m  rakes  l i t t l e  

d i f f e r e n c e  i n  al/an. However, 02/on is g r e a t l y  reduced i n  both ca ses .  This  

can be understood us ing  t h e  sum ru l e .  Although a t  a  g iven frequency al/atl 

changes only  s l i g h t l y  wi th  strong-coupling,  i n t e g r a t i n g  the  sma l l  d i f f e r e n c e  

over  a l l  f r equenc ie s  produces a  change i n  t h e  c o e f f i c i e n t  A of t h e  d e l t a  

func t ion  term of al/un. The change i s  a s i z e a b l e  f r a c t i o n  of A i t s e l f ,  and 

thus  A f o r  s t rocg-coupl ing is reduced no t i ceab ly  from i t s  va lue .  This  

r educ t ion  i s  r e f l e c t e d  i n  a2bn a s  a sma l l e r  W-' term. Since  t h i s  term 

provides  a  r e l a t i v e l y  l a r g e  po r t i on  of c /D a t  f requencies  below t h e  gap, a  
2  n 

s i g n i f i c a n t  decrease  i n  A should produce a corresponding decrease  i n  o2/un, 

which i n  f a c t  i s  what happens. 

Shaw and Swihart  noted f o r  lead  t h a t  a l l  but  about one pe rcen t  of 

t he  change i n  a2/un a t  f requencies  below 2s r e s u l t s  f r o n  a change i n  A. 
g .  

The same is  t r u e  f o r  bismuth and g a l l i u a ,  and is i n  f a c t  t r u e  f o r  f r equenc ie s  

up t o  2.5 t imes  t h e  gap 2 W  f o r  those  ma te r i a l s .  

S ince  s t r o n g  coupl ing changes al/on only s l i g h t l y  a t  a  given 

- 1 
be obta ined by s u b t r a c t i n g  a n  ;u te rm from the  >fB value ,  i t  seems t h a t  a  

good e s t i m a t e  of t h e  s t rong-coupl ing conduc t iv i ty  can be simply obta ined 

i n  t h i s  way from t h e  MB r e s u l t s ,  without doing complicated computer c a l c u l a -  

The r e a l  snd imaginary p a r t s  of t h i s  approximate conduc t iv i ty  





















PI. RESULTS AHD DISCUSSION 

The e x p e r i m n t a l  r e s u l t s  obta ined by u s i n g  t h e  equipment d iscussed 

i n  Sec t ion  11 a r e  p r e ~ e n t e d  i n  t h i s  s e c t i o n .  I n  a  t a b l e ,  t he  da t a  a r e  

summarized. For each n a t e r i a l  t he  comparison of t he  f a r  i n f r a r e d  d a t a  with 

t h e  numerical  c a l c u l z t i o n s  is given. Comparisons wi th  r e s u l t s  of o t h e r  

i n v e s t i g a t o r s  a r e  a l s o  presented .  

The sumwiry o f  t h e  r e s u l t s  is given i n  Table 3. Some explanat ion  

of t h e  t a b l e  i s  necessary.  F i r s t ,  n o t  211 t h e  columns a r e  a p p l i c a b l e  f o r  

every  sample, a s  can be noted by t h e  absence o f  some e n t r i e s .  The t r a n s i t i o n  

tempera tures  a r e  presented  wi th  e s t ima ted  u n c e r t a i n t i e s .  Tne range of 

u n c e r t a i n t y  f o r  t h e  ga l l i um samples is  h ighe r  t han  f o r  the  o t h e r  samples 

because o f  d i f f i c u l t i e s  with t h e  thermometer du r ing  those  measurements. The 

energy gap 2w determined by f i f t i n g  t h e  f a r  i n f r a r e d  d a t a  i s  g iven with i t s  
g  

r e s i s t a n c e  R i n  ohms pe r  square  o f  t h e  f i lms  i s  obta ined by mul t ip ly ing  the  

a c t u a l  r e s i s t a n c e  of t h e  f i l m s  by t h e  i z t i o  o f  t h e i r  width t o  l eng th ,  g iv ing  

t h e  r e s i s t a n c e  they would have i f  they were square .  I f  a  v a l u s  of r e s i s t a n c e  

o t h e r  than R was used i n  f i t t i n g  t h e  i n f r a r e d  d a t a  t o  t h e  numerical  r e s u l t s  

i t  is enclosed i n  parentheses  next  t o  t h e  dc r e s i s t a n c e .  The th i ckness  t 

determined by the  o p t i c a l  t h i ckness  measurements is given. The r e s i s t i v i t y  P 

was c a l c u l a t e d  from R and t. F i n a l l y  g iven is t h e  temperature Tannealing a t  

which the  r e s i s t a n c e  of t h e  f i l m  ind ica t ed  t h e  onset  of c r y s t a l l i n i t y .  I n  

. . 







some cases  t he  r e s i s t a n c e  was n o t  followed up t o  t h e  phase change s o  i t  can 

only be s t a t e d  t h a t  Tannealing i s  g r e a t e r  than (>) t h e  temperature sho;m, 

I n  some o t h e r  ca ses  t he  change occurred  while the  c r y o s t a t  was unattended s o  

d it is poss ib l e  only  t o  s ay  t h a t  t he  change occurred i n  a  g iven temperature 
f 
i 

i n t e r v a l .  For f i l m  which were annealed be fo re  t h e  measurewnts  were made, 

1 t h e  tempera tures  a t  which t h e  annea l ing  was done a r e  shown i n  parentheses  

next  t o  t he  f i l m  numbers. 

In t h e  p l o t s  o f  f a r  i n f r a r e d  d a t a  t o  be presented  i n  t h i s  s e c t i o n ,  

no e r r o r  b a r s  a r e  shown. As s t a t e d  i n  Sec t ion  11; under " In f r a red  Errors ,"  

however, t he  random e r r o r  i n  Ts/Tn i s  es t imated  t o  be l e s s  t han  about t h r e e  

percent  and t h e  known sys t ema t i c  e r r o r  t o  be l e s s  t han  about f i v e  percent .  

The sys t ema t i c  e r r o r  has  an  e s t ima ted  aaximum t h i s  l a r g e  only near  t h e  p o i n t s  

;here the  main g r a t i n g s  were changed. As Tn was assumed t o  be cons t an t  with 

frequency it does not  c o n t r i b u t e  t o  t he  random e r r o r .  It i s  es t imated,  

however, t h a t  t h e  u n c e r t a i n t y  i n  t he  determinat ion  of Tn is  l e s s  than about 

one percent.  The normal s t a t e  d a t a  a r e  g iven i n  t h e  Appendix. 

The d i s c u s s i o n  of t h e  r e s u l t s  is begun with l ead ,  t h e  only 

s t rongly-coupled  m a t e r i a l  p rev ious ly  s t u d i e d  i n  d e t a i l .  Data on one 

sample s tud ied  i n  t h i s  work is presented  and some of t h e  r e s u l t s  of e a r l i e r  

measurements w i l l  a l s o  be compared wi th  t h e  numerica l  c a l c u l a t i o n s  done i n  

t h i s  work. 

Lead Film 

During t h e  development of t h e  c r y o s t a t  and f a r  i n f r a r e d  techniques ,  

lead  f i lms  were examined because they  were much e a s i e r  t o  make and it was 
- .  - - .  

n o t  necessary  t o  keep them cooled  t o  helium tempera tures  a t  a l l  t imes,  a s  



with  t h e  amorphous f i lms  of o t h e r  ma te r i a l s .  One was madc a f t e r  t he  c r y o s t a t  

had evolved t o  t he  form used i n  t h e  l a t e r  measurenents,  This f i l m  was 

evapora ted  on to  a 77 K s u b s t r a t e  and annealed a t  t h i s  temperature f o r  about 

one day. The exper imenta l  f a r  i u f r a r e d  t ransmiss ion r a t i o  T /T i s  shown 
s  11 

4 i n  Figure  11, a long  with two t h e o r e t i c a l  curves .  The lower t h e o r e t i c a l  

curve  was c a l c u l a t e d  from t h e  gap p a r a m t e r  supp l i ed  by Shaw and Swihart  

which was der ived from the  tunne l ing  measurements of McWillan and Rowell. 

The upper t h e o r e t i c a l  curve  r e s u l t e d  from Nam's va lues  of U /O s n' 

It can be seen  t h a t  t h e  e x p e r i w n t a l  d a t a  agree b e t t e r  with the  

Nam r e s u l t  t han  the  Swihar t  one, t h e  oppos i t e  of what should have occurred 

s i n c e  t h e  Nam r e s u l t  i s  based on a  good, but n e c e s s a r i l y  incomplete, theore-  

t i c a l  model of t h e  phonon spectrum whi le  Shaw and Swiha r t ' s  i s  der ived from 

e x p e r i w n t a l  da t a .  The Shaw and Swihar t  r e s u l t  f o r  the  peak he igh t  is 11 

pe rcen t  below t h e  da t a ,  and t h e  ITam r e s u l t  i s  7 percent  below the  da t a .  

Palmer and  inkh ham(*') a l s o  compare the  da t a  f o r  one of t h e i r  

samples with t he  Nam r e s u l t  and f i n d  e x c e l l e n t  agreement. Had they used 

t h e  Shaw and Swihart  r e s u l t  t h e  agreement would no t  have been a s  good, but  

would s t i l l  have been w i t h i n  t h e i r  e s t ima ted  u n c e r t a i n t y  of f i v e  percent .  

Bulk Lead and Lead Alloy Sacples--Comparison with t he  Theory 

The c a l c u l a t e d  va lues  of u /U were a l s o  used t o  eva lua t e  t he  
s n 

su r f ace  impedance r a t i o  R /R f o r  comparison with t he  e x p e r i m n t a l  d a t a  of s n 

L e s l i e  and Ginsberg. (I5) Using forarulas d i scussed  elsewhere,  (25,271 th is  

r a t i o  was eva lua t ed  i n  both t h e  extreme anomalous l i m i t  and the  extreme 

l o c a l  l i m i t  u s i n g  t h e  Shaw and S v i h a r t  conduc t iv i ty .  For comparison wi th  
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t he  d a t a  t h e  e x p e r i n e n t a l l y  deternixled q u a n t i t y  P(cu) was evaluated  from t h e  

s u r f a c e  r e s i s t a n c e  r a t i o :  

Rn @J) - RS (w) 
P O  = 

1 9 

En - r; Rs (lo> 

1 where k is a n  expe r imen ta l ly  determined parameter.  F igure  12 shows d a t a  
4 

f o r  t he  sample c l o s e s t  t o  t h e  e x t r e m  anomalous l i m i t  where 1 << 5 ;  i t  

neve r the l e s s  docs n o t  w e l l  s a t i s f y  t h i s  c o n d i t i o n  a s  h / c  = 0.51. P l o t t e d  

wi th  t h e  d a t a  a r e  t h e  r e s u l t s  o f  t h e  n u n e r i c a l  c a l c u l a t i o n  i n  the  extreme 

anomalous and l o c a l  l i m i t s .  The experimental onset  of abso rp t ion  nea r  t h e  

gap appears  more r a p i d  t h a n  e i t h e r  of t h e  t h e o r e t i c a l  curves ,  but a t  h igh 

f r equenc ie s ,  t h e  expe r imen ta l  dec rease  i n  P(ffl) i s  l e s s  r a p i d  than t h a t  of 

t h e  theory.  

F igu res  13  and 14 s h w  d a t a  and theory  f o r  t h e  two samples c l o s e s t  

t o  t h e  l o c a l  l i m i t ,  where L << go. As sho rn  on t h e  f i y r : ;  t he se  cond i t i ons  

a r e  n o t  met by t h e  samples. I n  both  c a s e s ,  however, renarkably  good agree-  

ment occurs  wi th  t h e  t h e o r e t i c a l  curve  f o r  t h e  extreme anomalous l i m i t ,  

r a t h e r  t han  t h a t  f o r  t h e  l o c a l  l i m i t .  I n  F igu re  13 i s  a l s o  shown t h e  weak- 

- coupl ing numerical  c a l c u l a t i o n  done by Ginsberg.  (*') Here the  l a t t e r  r e s u l t  . 

l i e s  above both the  s t rong-coupl ing r e s u l t s  f o r  a l l  f r equenc ie s  above t h e  

De ta i l ed  conc lus ions  cannot  he  drawn wi thout  performing s t rong-  

coupl ing c a l c u l a t i o n s  which d o  n o t  r e s o r t  t o  a  l i m i t i n g  form. It can be 

observed, however, t h a t  t h e  s t rong-coup l ing  theory  does provide about t h e  . 

exper imenta l ly  determined s t eepen ing  of t h e  curves  beyond the  MB pred ic t ion .  















If t h e  c o r r e c t i o n  t o  t h e  l i m i t i n g  forms der ived by Ginsberg were t o  app ly  

d i r e c t l y  t o  t h e  sLrong-coupling r e s u l t  and were a s  l a r g e  a s  f o r  t he  weak- 

coupl ing case ,  t hen  indeed the  p red ic t ed  s t eepen ing  would bc too  g r e a t .  

The d a t a  of Norman and ~ o d g l a s s ' ~ ~ )  can a l s o  be com2ared with t he  

r e s u l t s  of t h e  riumerical c a l c u l a t i o n .  The i r  d a t a  f o r  lead  f i lms  a r e  

presented  i n  t e r m  of the  s u r f a c e  r e s i s t a n c e  r a t i o  R /R These f i l m s  a r e  
s n' 

considered  t o  be bulk samples a s  t h e i r  th icknesses  a r e  g r e a t e r  t han  the  

coherence l eng th  f o r  lead .  Here aga in  the  samples a r e  no t  i n  e i t h e r  of 

t h e  limits where a  simple form of t h e  conduc t iv i ty  desc r ibes  them. The 

data,shown i n  Figure  15, l i e  above t h e  theory  f o r  f r equenc ie s  nea r  t he  gap 

edge. That  is, t h e  onse t  o f  abso rp t ion  i s  even more r a p i d  than  p red ic t ed  

by t h e  s t rong-coupl ing theory  i n  e i t h e r  of t he  l i u i t s .  Tne c a l c u l a t i o n s  

o f  Ginsberg sugges t ,  however, t h a t  t h e  agreement might be improved i f  t h e  

s u r f a c e  r e s i s t a n c e  were evaluated  without r e s o r t  t o  one o f  t h e  l i m i t i n g  

Amorphous B i s m t h  Films 
a 

The f a r  i n f r a r e d  d a t a  f o r  t he  bismuth samples a r e  shown i n  

F igu res  16  through 18 arid t h e  parameters c h a r a c t e r i z i n g  these  f i lms i n  

Table  3. P l o t t e d  a long with t h e  f a r  i n f r a r e d  d a t a  a r e  t h e o r e t i c a l  curves  

g iv ing  t h e  p r e d i c t i o n s  o f  t h e  MB and s t rong-coupl ing t h e o r i e s ,  w i th  t h e i r  

coup l ing  theo ry  is a  d i s t i n c t  improvement over t h e  weak-coupling r e s u l t .  

For  b i s w t h  f i l m  Bi l l ,  Bi-2, and Bi-3 t h e  agreement i s  good. Moreover, t o  

o b t a i n  t h i s  f i t ,  t he  only  a d j u s t a b l e  parameter was t h e  s c a l i n g  of t h e  frequency. 

The r e s i s t a n c e  used was t h e  measured dc r e s i s t a n c e .  For two o t h e r  f i l m s ,  



















vhich were a c c i d e n t a l l y  annealed be fo re  measurements were completed, no 

normal s t a t e  d a t a  were a v a i l a b l e  s o  t h a t  an  a c c u r a t e  de terminat ion  of the  

energy gap 2w was no t  poss ib l e .  4 f i n a l  sample, m ~ c h  th i cke r  than the  
6  

4 o t h e r s ,  w+s made t o  check agreement of t r a n s i t i o n  temperature wi th  those 

r epo r t ed  f o r  t une l ing  and o t h e r  measurements. The comparison i s  shown i n  

The d i f f e r e n c e s  i n  t h e  t r a n s i t i o n  tempera tures  l i s t e d  a r e  probably 

due t o  a  combination of d i f f e r i n g  c r y s t a l l i n i t y ,  t h i ckness ,  p u r i t y ,  and 

thermometry f o r  va r ious  samples. Naugle and a lover'^^) have repor ted  t h a t  

f o r  f i lms  t h i c k e r  than 150 g, t h e r e  is a  downward s h i f t  i n  T which is 

n e a r l y  l i n e a r  i n  r e i s s t a n c e ,  a  drop of about 10 mK occur r ing  f o r  a  1000 2 

f i lm.  This  may account f o r  some of t h e  d i f f e r e n c e s  observed. 

I n  Figure  19 a r e  p l o t t e d  the  energy gaps 2m and t r a n s i t i o n  

tempera tures  versus  r e s i s t a n c e  f o r  t.he b i s w t h  f i lms .  They have each been 

normalized t o  t he  t h i c k  f i l m  r e s u l t s  o f  Chen & at.(83) A decrease  i n  both,  

w i th  i nc reas ing  r e s i s t a n c e ,  is apparent .  Also included i n  t h i s  f i g u r e  i s  a 

Glover: it l i e s  below our  d a t a ,  a s  might be expected from t h e i r  observat ion  

t h a t  f o r  the  f i lms  l e s s  t han  150 R t h i c k  Tc i s  depressed l e s s  than t h e  l i n e a r  

dependence. Our t h i c k e s t  f i l m  was only  200 th ick .  

As i nd i ca t ed  i n  Table 3 ,  t h e  tempera tures  a t  which t h e  b i s m t h  

f i l m  annealed i n t o  t he  c r y s t a l l i n e  s t a t e  were a l l  above the  t h i c k  f i l m  

r e s u l t  of 19 K and the  commonly r epo r t ed  value  o f  about 15 K, f o r  t h i ck  

f i lms .  The onset  of c r y s t a l l i n i t y  is a s s o c i a t e d  wi th  an  i r r e v e r s i b l e  and 









! abrupt  i nc rease  i n  r e s i s t a n c e  with i nc reas ing  temperature.  Not only d i d  
\ 

4 .  t he  t r a n s i t i o n s  f o r  these  t h i n  f i l m  occur a t  a  h ighe r  temperature than f o r  

t he  t h i c k  ones but a l s o  i t  was not  ab rup t  but gradual .  As the  gal l ium 

f i lms  behaved s i m i l a r l y  more d i s c u s s i o n  of t h i s  behavior w i l l  be given with 

t h e  d a t a  on annealed ga l l i um f i lms .  

Amorphous Gallium Films 

In Figures  20 through 22 a r e  shown t h e  f a r  i n f r z red  d a t a  f o r  t h ree  

amorphous ga l l i um samples and Table 3  g ives  the  r e m i n i n g  r e s u l t s .  For one 

of t h e  t h r e e  samples,  Ga-1, good agreement wi th  theory  was obtained s o l e l y  

by s c a l i n g  the  frequency i n  the  t h e o r e t i c a l  curve.  I n  t he  ca ses  of Ga-2 

and Ga-3, t he  f i lms  were v i s i b l y  t h i n n e r  i n  a  band p a r a l l e l  t o  and over- 

lapping one o f  t he  e l e c t r o d e s ,  but  ou t s ide  t h e  r eg ion  through vhich the  f a r  

i n f r a r e d  passed. Thus the  f a r  i n f r a r e d  r e s u l t s  a r e  c h a r a c t e r i s t i c  o f  t he  

t h i c k e r  po r t i on .  The t r a n s i t i o n  tempera ture  should be c h a r a c t e r i s t i c  of 

t h a t  po r t i on  a l s o  a s  t he  t h inne r  r eg ion  should have a l r eady  been normal a t  

t h e  t r a n s i t i o n  of t he  t h i c k e r  a r e a ,  i n t roduc ing  only a  s h i f t  i n  t h e  z e r o  

o f  t he  a c  r e s i s t a n c e  measurement. The dc  r e s i s t a n c e ,  however, would be 

expected t o  c h a r a c t e r i z e  t h e  e n t i r e  f i l m ,  and thus  not  agree  wi th  the  f a r  

i n f r a r e d  r e s i s t a n c e .  The agreement between t h e  f a r  i n f r a r e d  d a t a  f o r  f i lms  

Ga-2 and Ga-3 was t h e r e f o r e  obta ined by a d j u s t i n g  the  f a r  i n f r a red  r e s i s -  

tance  u n t i l  a  bes t  f i t  was achieved. The . e f f eo t  of t h i s  change from t h e  dc 

r e s i s t a n c e  is p r imar i ly  t o  change the  t h e o r e t i c a l  peak he igh t ,  al though it 

does a l s o  s h i f t  t he  t h e o r e t i c a l  p o s i t i o n  of t h e  peak s l i g h t l y .  















For  t h e  f a r  i n f r a r e d  d a t a  t he  agreement with t he  theory  i s  not  as  

1 good a s  t h a t  f o r  bismuth. Tne major d iscrepancy i s  a  d i f f e r e n c e  i n  s lope  

4 betueen ~ h e  d a t a  and theory  i n  t h e  region below the  gap. It 5s no t  known 

whether t h e  source  of t he  var iance  is exper imenta l  o r  t h e o r e t i c a l ,  al though 

i n  defense  of t he  exper imenta l  techniques  the  e x c e l l e n t  agreement of theory  

wi th  t h e  b i s m t h  d a t a  should be offered:  t he  same techniques were used 

wi th  both k inds  of f i lms .  

I n  F igu re  23, 2wg and Tc, normalized t o  t he  t h i c k  f i l m  tunnel ing  

r e s u l t s  of ~ G h l ,  Br iscoe ,  and ~ a c k s o n , ( ~ ~ )  a r e  p l o t t e d  a s  a  func t ion  of 

r e s i s t a n c e  f o r  each f i lm .  As i n  t he  ca se  o f  bismuth a  decrease  i n  both of 

t hese  q u a n t i t i e s  w i th  i nc reas ing  r e s i s t a n c e  i s  apparent .  Again the  dashed 

l i n e  shows t h e  r e s u l t  of Naugle and Glover, t h i s  t l m  f o r  gall ium, and agarn  

t h e  l i n e  f a l l s  below most o f  t h i s  da t a .  A s  f o r  b i s m t h  t h i s  is i n  accord 

wi th  Naugle and Glover ' s  comment t h a t  f o r  g a l l i u a  a l s o ,  Tc i s  depressed 

l e s s  t han  t h e  l i n e a r  r e l a t i o n  f o r  f i l m s  th inne r  than 150 2. 

V a r i a t i o n  i n  t h e  T 's r epo r t ed  i n  t h e  l i t e r a t u r e  f o r  t h i c k  ga l l i um 

f i l lns  a r e  g r e a t e r  t han  those  f o r  bismuth. These va lues  a r e  summarized i n  

Annealed Gallium Films 

Fa r  i n f r a r e d  d a t a  were taken f o r  f i lms  Ga-1 and Ga-2 a f t e r  they 

were annealed.  These d a t a  a r e  shown i n  Figures  24 through 26 a long with t he  

s t rong-coupl ing theory  f o r  ga l l i um f i lms  i n  t he  B-phase. The FfB r e s u l t  1s  

shown a l s o .  



















The d a t a  shown i n  Figure  25 were t r e a t e d  i n  a s p e c i a l  way. The 
- 

normalized normal s t a t e  t ransmiss ion T was assumed t o  be cons t an t .  Using n 

the  h e a t e r  T /T was measured a s  a c c u r a t e l y  a s  poss ib l e  a t  one frequency. s n - 
Then Ts was sca l ed  by the  same f a c t o r  a t  each frequency s o  t h a t  t he  s ca l ed  

d a t a  coincided with t he  measurement of T /T Th i s  prodriced a transmis- 
s n -  

s i o n  r a t i o  which had a magnitude of about 1.4 a t  t h e  h ighes t  f requencies  

f o r  which d a t a  were taken. That is, t h e r e  was poor agreement with theory  

a t  t he  h ighe r  f requencies .  The poor agreement depended on a s i n g l e  

measurement. Furthermore, beczuse o f  t h e  ve ry  loh* r e s i s t a n c e  of t he  f i lm ,  

t he  i ~ t e n s i t y  of r a d i a t i o n  pass ing through t h e  f i l m  and a r r i v i n g  a t  t h e  

d e t e c t o r  was low, producing a low s igna l - to -no i se  r a t i o .  Thus the  measure- 

ment of T /T was deemed anomalous and t h e  va lues  of ? were sca l ed  by a n  a n 

a r b i t r a r y  f a c t o r  chosen t o  produce good agreement between experiment and 

- 1 
theory  a t  f requencies  between 40 and 90 cm . 

Measurements of f i l m  r e s i s t a n c e  a s  a f u n c t i o n  of temperature 

showed t h a t  t hese  annealed f i lms had anneal ing  tempera tures  r a t h e r  d i f f e r e n t  

from those usua l ly  r epo r t ed  f o r  t h i c k e r  f i lms .  According t o  previous 

r e p o r t s ,  amorphous gal l ium should go i n t o  a c r y s t a l l i n e  phase,  c a l l e d  t h e  

B-phase, a t  about 15 K. For our t h inne r  f i l m s ,  however, a s  can  be seen  i n  

Table 3, t h i s  change occurred above 30 K .  Furthermore annea l ing  overnight  

a t  77 K d i d  not  produce a f i l m  with a Tc a s  low a s  6.2 K t o  6.3 K, t h a t  

r epo r t ed  f o r  t h i c k  f i lms  i n  t he  $-phase. I n  f a c t ,  t he  r e s i s t a n c e  of 

Ga-1 continued t o  decrease  a s  t h e  tempera ture  was r a i s e d  t o  200 K. Only 



t hen  d i d  t h e  r e s i s t a n c e  begin t o  fnc rease  s l i g h t l y .  When t h i s  f i l m  was 

recooled ,  i t s  t r a n s i t i o n  temperature was 6.55 K, s t i l l  h i g h e r  than t h a t  

quoted  f o r  t h e  @-phase i n  t h i c k  f i lms .  When Ga-2 was annealed  a t  77 K i t s  

t r a n s i t i o n  temperature f e l l  t o  6.31 K. S ince  i t  bras t h i n n e r  than Ga-1, 

i t  might have been expected t o  d e v i a t e  more than  Ga-2 from t h e  t h i c k  f i lm  

r e s u l t ,  r a t h e r  than ve ry  c l o s e l y  approach it. 

S o w  unders tanding of t hese  r e s u l t s  can  be obta ined from the  work 

o f  Sander. He observed t h a t  t h i n n e t  amorphous f i l m  annea l  a t  h ighe r  

tempera tures  t han  t h i c k e r  ones. I n  f a c t  he used t h i s  p rope r ty  s o  t h a t  he 

could  s tudy  amorphous f i lms  i n  a  l i q u i d  hydrogen cooled  c r y o s t a t .  XE 

f i l m  were made t h i c k e r  than 400 2 f o r  bismuth and 1000 f o r  ga l l ium,  

t hey  were a l r e a d y  annealed when depos i t ed .  I n  Sander ' s  work measurements 

were made o f  t h e  energy r e l ea sed  when g a l l i u m  and b i s w t h  f i l m s  annealed.  

He found a  h e a t  of t r ans fo rma t ion  f o r  b i s m t h  which was independent of 

f i l m  th i ckness  from the  t h i c k e s t  s t u d i e d ,  400 g, down t o  200 2. For two 

t h i n n e r  samples t h e  h e a t  of t r ans fo r t r a t i on  was s m a l l e r  by n e a r l y  a  f a c t o r  

o f  two. I n  t he  ca se  of amorphous ga l l i um t h e  m a s u r e d  h e a t  of t r a n s f o r -  

mation was cons t an t  f o r  t h i cknesses  down t o  320 2, t h a t  of h i s  t h i n n e s t  

sample. An a d d i t i o n a l  p rope r ty  was observed f o r  t h e  t h i n n e s t  bismuth 

f i l m s .  He evaporated a  second amorphous b i s m t h  l a y e r  over  t h e  previous ly  

annealed t h i n  bismuth f i l m  which had shown a  reduced 'neat o f  t r ans fo rma t ion  

The h e a t  of t r a n s f o r n u t i o n  per u n i t  volume o f  t h e  coclposite f i l m  was then 



found t o  be  h ighe r  than p red ic t ed  u s i n g  the  cons t an t  va lue  previous ly  

observed f o r  t h i c k e r  f i lms  and assuming no c o n t r i b u t i o n  from the  under ly ing 

t h i n  f i lm.  The excess  hea t  was about equa l  t o  the  a d d i t i o n a l  hea t  which 

would have been given up by the  t h i n  f i l m  a lone  had i t  shown the  same 

h e a t  of t r a n s f o r m t i o n  a s  t he  t h i c k e r  f i lms.  Thw he  assumed the  th inne r  

"annealed" f i lms had s t r u c t u r e s  on ly  p a r t i a l l y  transformed i n t o  t he  

~ r ~ s t a l l i n e ' p h a s e  c h a r a c t e r i s t i c  of t he  t h i c k e r  ones.  

It appears  t h e r e f o r e  t h a t  t hese  f i lms  a r e  not  d i r e c t l y  comparable 

-with t h e i r  t h i c k e r  coun te rpa r t s .  Never theless ,  t h e  s t rong-coupl ing r e s u l t  

de sc r ibes  t h e  t ransmiss ion d a t a  moderately we l l ,  even though t h e  gap 

parameter which was used was der ived from tunne l ing  d a t a  f o r  a  much t h i c k e r  

f i l m .  No at tempt  has  been made .to a d j u s t  t h e  i n f r a r e d  r e s i s t a n c e  from i t s  

dc vaiue  t o  improve t h e  agreement. I n  t he  ca se  of amorphous Ga-1, no 

r e s i s t a n c e  change was necessary;  s i n c e  one might expect  t h e  same r e l a t i v e  

change a f t e r  t h e  f i l m  was annealed,  none was made. Changing t h e  r e s i s t a n c e  

of annealed Ga-2 by t h e  same r e l a t i v e  amount a s  i n  t he  amorphous case  

would have made a  n e g l i g i b l e  d i f f e r ence .  

DISCUSSION 

The measurewnts  have been corneared with t he  theory  and with 

r e s u l t s  o f  o t h e r  experiments.  A few remarks on one comparison d e l i b e r a t e l y  

n o t  made and on those which were made a r e  app ropr i a t e .  
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F luc tua t  i nns 

Recently t h e r e  h a s  been a  g r e a t  d e a l  of theore t ica l (92 '  and 

expe r iwn ta l (93 )  i n t e r e s t  i n  t h e  f l u c t u a t i o n  p a i r i n g  of e l e c t r o n s  i n  

superconductors a t  t e q e r a t u r e s  s l i g h t l y  above t h e i r  superconducting 

t r a n s i t i o n s .  I n t e r p r e t a t i o n  i n  t hese  t e r m  of any expe r i r c rn t a1 , r e su l t s  

which show rounding of t he  r e s i s t i v e  t r a n s i t i o n  i n  t h i n  f i lms i s  impeded 

because i t  i s  not  poss ib l e  t o  be c e r t a i n  t h a t  t h e  rounding i s  due t o  

f l u c t u a t i o n s .  It might i n s t e a d  be caused by some o t h e r  unknown e f f e c t .  

Thin f i lms  i n  gene ra l  a r e  very  d i f f i c n l t  t o  a c c u r a t e l y  cha rac t e r i ze .  I n  

p a r t i c u l a r ,  s i n c e  t h e  f i l m s  s t u d i e d  i n  t h i s  work had a  n e c e s s a r i l y  l a rge  

a r e a  f o r  t h e  f a r  i n f r a r e d  measurements, they probably a r e  more inhomogeneous 

t h a n  those  used i n  " f luc tua t ion"  measurements. S ince  conclus icns  drawn from 

those  experiments a r e  r a t h e r  tenuous, such conclus ions  from these  expe r inen t s  

would be h igh ly  specu la t ive .  

Fa r  In f r a red  Rad ia t ion  and S t ron~ ly -Coup led  Superconductors 

Quan t i t a t i ve  comparison is now poss ib l e  between f a r  i n f r a r e d  

experiments on superconductors and t h e  theory  of Nam. The r e l a t i v e l y  good 

agreement between experiment and theory ,  which h a s  been shown by t h i s  

experiment and t h a t  of Palmer and Tinkham, t e s t i f i e s  t o  t he  g r e a t  advances 

i n  far i n f r a r e d  d e t e c t o r s  s i n c e  t h e  p ioneer ing exper iment  o f  Glover and 

Tinkharn. 

However, t he  l i m i t a t i o n s  o f  f a r  i n f r a r e d  technology a r e  r e spons i3 l e  

f o r  t h e  p re sen t  u n c e r t a i n t y  a s  t c  t h e  e x i s t e n c e  of t h e  precursor .  The theory  

of Nam p r e d i c t s  no abso rp t ion  of r a d i a t i o n  a t  f r equenc ie s  below the  gap 

2m f o r  T = 0 .  To the  e x t e n t  t h a t  t h e  d a t a  t aken  i n  t h i s  work agree  with 



t h a t  theory  they c x h i b i t  no precursor .  P a r t i c u l a r l y  i n  t he  ca se  of bismuth 

j t h a t  agreement is very good indeed. However, t o  reduce t h e  mximum poss ib l c  
i I 

1 magnitude o f  precursor  abso rp t ion  below a  few percent  of the  normal s t a t e  
ri 

1 absorpt ion ,  a  techriological  advance w i l l  be  necessary .  

9 Neither  have f a r  i n f r a r e d  techniques  advanced s u f f i c i e n t l y  f a r  t o  

enab le  measurement of t h e  s t r u c t u r e  p red ic t ed  by Nam. As has been pointed  

ou t ,  i n  t hese  experiments i t  is t h e  s h i f t  from the  MB r r t su l t  i n  t he  q u a n t l t y  

A of Equation (16) which i s  r e f l e c t e d  i n  t h e  peak he igh t  of the  t ransmiss ion 

r a t i o .  The peak h e i g h t  i s  determined p r imar i ly  by t h e  f a r  i n f r a r e d  r e s i s t a n c e  

of t he  f i l m  and the  q u a n t i t y  A, s i n c e  cYl/cY, and (U /C - A) do no t  change 2 n  

app rec i ab ly  wi th  strong-coupling.  It has ,  t h e r e f o r e ,  been shown t h a t  t h e  

dc  r e s i s t a n c e  and A der ived from tunne l ing  r e s u l t s ,  p lu s  s c a l i n g  of t h e  

frequency i n  t h e  theory  t o  t he  measured energy gap, lead  t o  moderate agreement 

wi th  t he  measured peak he igh t .  However, s c a l i n g  t h e  frequency is d i s t u r b i n g .  

Before t h i s  s h i f t  i s  made s t ru ' c tu re  appears  i n  as/an a t  f requencies  2 W  4-cu 
g 5' 

where UI r e p r e s e n t s  any of t he  phonon f r equenc ie s  a t  which v a r i a t i o n s  i n  t he  

phonon d e n s i t y  of s t a t e s  occur.  S c a l i n g  imp l i e s  t h a t  both 2w and ws s h l f t  
g  

downward, which probably i s  not  t rue .  

To t h e  a u t h o r ' s  knowledge i t  h a s  no t  been determined what cond i t i on ,  

o r  combinations o: them, l eads  t o  t h e  observed decrease  of 2wg arxl Tc i n  t hese  

t h i n  f i lms .  These cond i t i ons  might be s h i f t s  i n  t h e  phonon f r equecc i e s ,  

s u b s t r a t e  e f f e c t s ;  boundary e f f e c t s ,  f l u c t u a t i o n  e f f e c t s ,  and s o  on. U n t i l  

such a n  unders tanding i s  obta ined t h e s e  d a t a  cannot be analyzed i n  a  

completely s a t i s f a c t o r y  manner. The good agreement shown i n  t h i s  experiment 

i n d i c a t e s  t h a t  whatever t h e  e f f e c t  is, s c a l i n g  i s  a n  approximately c o r r e c t  

way t o  d e a l  wi th  the  comparison between theo ry  and these  d a t a .  



To i n c r e a s e  t h e  unders tanding o f  t h i s  problem, rm approaches 

a r e  poss ib l e .  F i r s t ,  t h e o r i s t s  might t ake  upon themselves t 5e  exceedingly 

d i f f i c u l t  problem of c a l c u l a t i n g  how such f i l m s  behave. h r igorous  compari- 

son  with t he  d a t a  would then be poss ib l e .  Considering ?he technologica l  

l i m i t a t i o n s  on t h e  accuracy of t h e  p re sen t  d a t a ,  i t  would probably provide 

good agreement. 

However, i n  t h i s  f i e l d  t h e  e x i s t i n g  <heory p r e d i c t s  d e t a i l s  which 

a r e  unmeasurable wi th  p re sen t  technology. The burden t i le refore  seems t o  

f a l l  on the  experimenter.  He must produce much more accu ra t e  d a t a  which 

would no t  only g ive  a p r e c i s e  de t e rmina t ion  of A, but  a l s o  provide d e t a i l s  

o f  t h e  s t r u c t u r e  i n  crs/an. Before such measurements can be nade, f a r  

i n f r a r e d  technology must be advanced. The bes t  d e t e c t o r s  a v a i l a b l e  today 

a r e  appa ren t ly  a l r e a d y  c l o s e  t o  t he  quantum mechanical l idts  of 

performance. (94) The most immediate problem which must be solved is t h e  

l a c k  of a n  i n t e n s e  source  of f a r  i n f r a r e d  r a d i a t i o n .  

As a beginning, r e c e n t  r e p o r t s  sugges t  t h a t  a new scurce  may be 

near.  (95,96,97) 
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Figure 28. Normal s t a t e  data for Bi-1. 
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Figure 29. 1:orn;al s t a t e  data for Bi-2.  












